
Unilac-BLM Programmer’s Manual

GSI ACO HEL

December 5, 2024
ver. 0.1

ii

Contents

1 Introduction 1
1.1 About this document . 1
1.2 Conventions . 1

1.2.1 Typesetting . 1
1.2.2 Reserved terms . 2
1.2.3 Numbering of entities 3
1.2.4 Version numbering . 3

2 Hardware description 5
2.1 System layout . 5
2.2 The Beam Loss Monitor (BLM) crate 6
2.3 Functional overview . 7

2.3.1 An up/down counter module 7
2.3.2 Device architecture . 8

2.4 Event-driven operation . 12

3 Programmers interface 13
3.1 Register model . 13

3.1.1 Notation . 13
3.1.2 Data format . 13

3.2 Registers reference . 14
3.2.1 Register superblocks 14
3.2.2 DIOB configuration and status superblock (0x0000) . . 14
3.2.3 IO backplane mask superblock (0x0630) 14
3.2.4 IO backplane ID superblock (0x0638) 15
3.2.5 Status superblock (0x0700) 16
3.2.6 Control superblock (0x0800) 20
3.2.7 Event status superblock (0x0900) 22
3.2.8 Event control superblock (0x0A00) 24
3.2.9 Input matrix superblock (0x1000) 26
3.2.10 Output matrix superblock (0x1100) 27

iii

iv CONTENTS

3.2.11 Counter readout superblock (0x1200) 29
3.2.12 Counter group assignment superblock (0x1600) 30
3.2.13 Threshold readout superblock (0x1800) 30
3.2.14 Threshold memory (0x8000) 31

3.3 Event decoding . 32
3.3.1 Event tag . 32
3.3.2 Event commands . 33

Chapter 1

Introduction

1.1 About this document

This document (called further the Manual) is about to describe the hardware
and firmware for Unilac Beam Loss Monitor (BLM), especially the program-
mer’s interface. It is the official reference for implementing related software
as well as installation and commissioning of the system.

1.2 Conventions

1.2.1 Typesetting

This Manual uses special text decoration to emphasize words or fragments of
text with special meaning. A summary of used text styles is shown in Table
1.1.

1

2 CHAPTER 1. INTRODUCTION

Constants
are names which denote well defined numbers like
register addresses, bit masks etc.

Reserved Terms
are important, well defined names, see Section
1.2.2.

Constraints are such words as shall or may .

Indexed terms
are terms introduced for the first time. They can
be found in the index.

Citations
are directly cited sentences or citation-like exam-
ples.

Code snippets are pieces of programming code or pseudo-code.

Important: Im-
portant

are things which should be read twice.

Comment: Com-
ments

are put mostly for clarification of statements with
questionable meaning.

Table 1.1: Summary of styles

1.2.2 Reserved terms

Some words in the Manual (like this one to the left) are treated as reserved
terms: it means that they mean exactly what they should mean and shall
not be used in a different context.

Constraints are a special form of reserved terms which define the area
of Developer’s freedom. For clarity, they are all always printed with specific
typesetting. They are all listed in Table 1.2.

1.2. CONVENTIONS 3

must
means that given condition must be fulfilled under
any circumstance

must not means that something is forbidden

shall

means that the developer should proceed accord-
ing the given specification if it’s possible. Com-
monly, this term will be used together with a con-
dition, e.g. The device shall reply immediately if it

doesn’t affect its real-time functions

shall not
means that something should be avoided if it’s
possible

may
means that it is allowed to do something and the
Developer is free to choose

Manual means this book

Developer
means a person who develops software based on
the Manual.

high means bit state of 1
low means bit state of 0

Table 1.2: Constraints and reserved terms

1.2.3 Numbering of entities

Every time when multiple entities of the same kind appear (like addresses
in address space, registers, slots in the backplane, connectors, cookies), their
numbering is zero-based.

1.2.4 Version numbering

Version numbers TODO: Version numbers

4 CHAPTER 1. INTRODUCTION

Chapter 2

Hardware description

2.1 System layout

Figure 2.1 shows a general system layout of the BLM.

Figure 2.1: A possible system layout

The beam loss measurement at Unilac is based on comparing beam in-
tensities measured at various places along the machine. Beam current is

5

6 CHAPTER 2. HARDWARE DESCRIPTION

measured in multiple places by beam transformers, amplified by front-end
amplifiers and sent to current-to-frequency converters. There, the analog
signal is converted to a series of digital pulses, whose rate depends on the
input current and may reach up to 25MHz.

The pulse signals are sent to BLM crates (called also ACO crates) via
a number of individual LEMO cables, using Trasnsistor-Transistor Logic
(TTL) standard levels. There, pulses are counted and the counts are used to
generate signals on interlock outputs if certain thresholds are exceeded.

For enabling the counters only within the beam-on time window, gate
inputs are used. Both gate inputs and interlock outputs use TTL standard
levels.

The BLM is controlled over the ACC network. The needed real-time
information is supplied via a White-Rabbit connection.

2.2 The BLM crate

A single crate contains required power supplies and the Scalable Control
Unit (SCU). Further it is equipped with a Digital I/O Board (DIOB) mod-
ule, which is the heart of the system and covers the whole BLM functionality
described here. The DIOB is equipped with a semi-backplane and 12 in-
put/output (I/O) modules for connecting all the needed signals, as shown in
Figure 2.2.

Note that module layout is fixed and cannot be changed. However, ex-
changing modules in slots 9–11 to optical I/Os is possible.

Figure 2.2: The BLM crate

2.3. FUNCTIONAL OVERVIEW 7

Function Description FG-Nr. Slots Count

Counter inputs
Fast TTL input
with LEMO
connectors

FG902.150 0–8 9

Gate inputs

Isolated TTL input
with LEMO
connectors

FG902.130 9–10 2

Fibre optical input FG902.110 9–10 2

Interlock outputs
TTL output with
LEMO connectors

FG902.140 11 1

Fibre optical output FG902.120 11 1

Table 2.1: I/O module types used

2.3 Functional overview

2.3.1 An up/down counter module

The up/down counter is the most important elementary functional compo-
nent of the BLM crate. It’s shown in Figure 2.3.

Figure 2.3: A single up/down counter

With the up- and downcounting capability, pulse rates from two detectors
can be compared to calculate the beam loss. The gate input allows activating
the counter only within the beam-on time window.

The count value is continuously compared against the positive threshold

8 CHAPTER 2. HARDWARE DESCRIPTION

and negative threshold. In case of exceeding on of the thresholds, a corre-
sponding overflow signal is asserted.

The count value and thresholds are represented with 32-bit two’s com-
plement code (U2)-encoded signed numbers. The current count value and
thresholds can be read out via a common bus. Thresholds can be pro-
grammed as described later in the Manual.

There is no overflow protection, but an overflow is not probable in normal
operation: one would need 85 s of open gate with an input frequency of
25MHz.

2.3.2 Device architecture

A complete block diagram of the BLM crate is shown in Figure 2.4.
The central element is a pool of 128 up/down counter modules: the

counter pool. The threshold laoder is responsible for loading values from
the threshold memory into counter modules.

The counters can be connected to arbitrary inputs and outputs by means
of patch matrices:

� input patch matrix for counter up/down signals,

� gate patch matrix for gate signals,

� output patch matrix for overflow outputs.

The input watchdogs are used for checking the input signal integrity.
To assure that measurement sequences are correct, gate logic is used.

2.3. FUNCTIONAL OVERVIEW 9

Figure 2.4: Block diagram of the device

Threshold loader and memory

A full set of threshold values contains 256 numbers: such a bundle is called
a dataset.

The threshold memory can store 32 datasets. The threshold loader allows
almost instantaneous reloading the counter modules with a new dataset.
To support the extraordinary Unilac’s architecture with timing sections and
virtual accelerators, the whole counter pool is divided into groups: each
individual counter can be freely assigned to one of 16 groups.

Groups and datasets have direct relation to Unilac’s timing sections and
virtual accelerators:

� group → timing section

10 CHAPTER 2. HARDWARE DESCRIPTION

� dataset → virtual accelerator

A single action of the threshold loader (threshold reload) is no more no
less than: reloading given group with given dataset. In order to do
it, the threshold loader cycles over all counters, checks their group numbers
and applies new threshold values from memory if the group number matches
the requested value. The whole procedure needs less than 5µs. This time is
independent of the size of the group to be reloaded.

The threshold loader is equipped with 16-stage First-In-First-Out (FIFO)
buffer for enqueuing reload requests. This allows for accepting batches of
reload requests via the event framework (see Section 2.4) in a very short
time.

Gate logic

Gate logic is used to check the integrity of gate signal connections. More
precisely, it’s not a pure logic, but rather a state machine, which works
according to the following algorithm:

1. Wait for a prepare signal. The prepare signal is provided either by
software or by the event system (see Section 2.4).

2. Wait for high signal on the input for a specified (programmable) time.

3. Keep the gate output asserted as long as the input remains asserted.

4. After deassertion of the input and prepare signal, wait for the next
prepare signal.

Alternatively, the gate logic can be switched into direct gate mode, where
the input is fed directly to the output. This allows operation without prepare
signals for a cost of lacking integrity check.

The full state diagram is shown in Figure 2.5.

2.3. FUNCTIONAL OVERVIEW 11

Figure 2.5: State diagram of the gate logic. Green arrows show the normal
operation sequence

Input watchdogs

Input watchdogs are used for continuous checking the signal path integrity
between current-to-frequency converters and the BLM crate. The check pro-
cedure relies on a fact that the pulse rate never falls to zero: even with zero
current signals, the converters output pulses at some base rate.

An input watchdog generates an error if it doesn’t recognize a positive
signal slope for a certain (programmable) time. Watchdog errors are latched
and need an error reset procedure (see 3.2.6).

The input signals are forwarded to the input patch matrix independently
of the watchdog error states. Watchdogs cannot be disabled, but their out-
puts may remain unconnected in the output patch matrix.

Input and gate patch matrices

The input patch matrix allows connecting the up- and downcounting inputs
of each counter:

� either to one of 54 signal inputs...

� or to one of internal test signals (see Table 3.25),...

� or to ground input (no signal).

The gate patch matrix allows connecting the gate input of each counter
to one of the gate inputs via gate logic.

12 CHAPTER 2. HARDWARE DESCRIPTION

Output patch matrix

The output patch matrix allows combining various signals into the 6 interlock
output signals. The signals to be combined are:

� positive and negative overflow signals from counter modules,

� error signals from input watchdogs,

� error signals from gate logic,

� forwarded gate inputs.

The feature of gate input forwarding is meant for daisy-chaining or net-
working multiple crates, where outputs from one or more crates can be
merged in by another crate.

For each output, all selected signals are logically or-ed. For compatibility
with inverse Fast Beam Abort System (FBAS)-type logic, the output signal
is negated. Signals from gate inputs are pre-inverted to maintain correct
logic.

2.4 Event-driven operation

Some operations of the BLM (like reloading thresholds or preparing gates)
can be triggered by events on the SCU bus. An event is a special SCU
bus cycle which is well-timed by means of Event-Condition-Action (ECA)
controller of the SCU. It provides a 32-bit event tag to the device, which
hold the information regarding the action to be performed.

For a full description of event tags, see Section 3.3.

Chapter 3

Programmers interface

3.1 Register model

3.1.1 Notation

The device is accessed via registers. All registers are 16-bit wide and are
word-addressed. The 16-bit address space allows addressing up to 65536
registers.

The Manual uses a strictly structurized register model with following lev-
els:

� superblocks

� blocks (optional)

� subblocks (optional)

� registers

� bits or bit groups (optional)

Correct notation includes all these levels separated by dots. Bits and bit
groups are separated by a colon:

SUPERBLOCK[.BLOCK[.SUBBLOCK]].REGISTER[:BIT]

Every existing register must have a name! Bits or bit groups may have a
name. If not defined, default names for bits are bit0 for least significant bit
(lsb) to bit15 for most significant bit (msb).

3.1.2 Data format

Unless otherwise noted, registers represent 16-bit unsigned integers.
Unless otherwise noted, bits are used in positive logic:

� if a particular bit is used as switch, high state means ’switch on’.

13

14 CHAPTER 3. PROGRAMMERS INTERFACE

� if a particular bit is used as trigger, then a transition from low to high
will be used.

3.2 Registers reference

3.2.1 Register superblocks

Table 3.1 shows the general register layout of the DIOB code (housekeeping
registers are not included).

Word
address

Symbol Description See

0x0000 DIOB CS
DIOB configuration and status

superblock
3.2.2

0x0630 IOBP MASK IO backplane mask superblock 3.2.3
0x0638 IOBP ID IO backplane ID superblock 3.2.4
0x0700 STATUS Status superblock 3.2.5
0x0800 CTRL Control superblock 3.2.6
0x0900 EVT STATUS Event status superblock 3.2.7
0x0A00 EVT CTRL Event control registers 3.2.8
0x1000 IN SEL Input matrix superblock 3.2.9
0x1100 OUT SEL Output matrix superblock 3.2.10
0x1200 CTR READOUT Counter readout superblock 3.2.11

0x1600 CTR GROUPS
Counter group assignment

superblock
3.2.12

0x1800 THR Threshold readout superblock 3.2.13
0x8000 THR RAM Threshold memory 3.2.14

Table 3.1: General layout of register blocks

3.2.2 DIOB configuration and status superblock (0x0000)

Currently, this superblock doesn’t contain any registers.

3.2.3 IO backplane mask superblock (0x0630)

The IO backplane mask registers allow controlling the red Light-Emitting
Diode (LED)s on I/O modules.

3.2. REGISTERS REFERENCE 15

Word
offset

R/W Symbol Description

0x0000 R/W BP MASK0-1 LED states for module 0 and 1
...

0x0005 R/W BP MASK10-11 LED states for module 10 and 11

Table 3.2: DIOB configuration and status superblock layout. Base: 0x0630

Bits Symbol Description

5–0
LED0 5 downto

LED0 0
LED states for the first I/O module

11–6
LED1 5 downto

LED1 0
LED states for the second I/O module

15–12 (not used)

Table 3.3: Bit definition of IO backplane mask registers

3.2.4 IO backplane ID superblock (0x0638)

The IO backplane ID registers allow checking which types of I/O modules
are attached to the DIOB inter-backplane. There are 6 registers in total -
each register handles two I/O modules - the first module occupies 8 lsbs and
the second one 8 msbs as shown in Table 3.5.

Word
offset

R/W Symbol Description

0x0000 R/o BP ID0-1
ID read out from I/O module 0

and 1
...

0x0005 R/o BP ID10-11
ID read out from I/O module 10

and 11

Table 3.4: DIOB configuration and status superblock layout. Base: 0x0638

Table 3.6 shows IDs for used module types.

16 CHAPTER 3. PROGRAMMERS INTERFACE

Bits Symbol Description

7–0 ID0 ID of the first I/O module
15–8 ID1 ID of the second I/O module

Table 3.5: Bit definition of IO backplane ID registers

Value Symbol Description FG-Nr.

0x03 IO LEMOIN
Isolated TTL input with

LEMO connectors
FG902.130

0x04 IO FIBREIN Fibre optical input FG902.110
0x05 IO FIBREOUT Fibre optical output FG902.120

0x06 IO LEMOOUT
TTL output with LEMO

connectors
FG902.140

0x07 IO DIGIN
Fast TTL input with LEMO

connectors
FG902.150

Table 3.6: IDs for used I/O module types

3.2.5 Status superblock (0x0700)

The status superblock is used to read the overall device state, including a
number of signals, errors and state machine states.

3.2. REGISTERS REFERENCE 17

Word
offset

R/W Symbol Description

0x0000 R/o NEG OVERFLOW Start of the negative overflow block
0x0008 R/o POS OVERFLOW Start of the positive overflow block
0x0010 R/o GATE ERROR Gate error register
0x0011 R/o WD ERROR Start of the watchdog error block
0x0017 R/o GATE IN Gate input monitoring register
0x0018 R/o GATE OUT Gate output monitoring register
0x0019 R/o OUT SIGNAL Output monitoring register
0x001A R/o GATE STATE Gate state monitoring block

0x001D R/o IO CTRL STATE
I/O slow control state monitoring

register

Table 3.7: Status superblock layout. base: 0x0700

Negative overflow block (0x0700+0x0000)

This block contains 8 registers for reporting negative overflow signals from
the 128 counters. Within each register, lsb corresponds to the counter with
the lowest number.

Word
offset

R/W Symbol Description

0x0000 R/o CTR0-15
Overflow signals for counters 0 to

15
...

0x0007 R/o CTR112-127
Overflow signals for counters 112 to

127

Table 3.8: Negative overflow block layout. Base: 0x0700+0x0000

Positive overflow block (0x0700+0x0008)

This block contains 8 registers for reporting positive overflow signals from
the 128 counters. Within each register, lsb corresponds to the counter with
the lowest number.

18 CHAPTER 3. PROGRAMMERS INTERFACE

Word
offset

R/W Symbol Description

0x0000 R/o CTR0-15
Overflow signals for counters 0 to

15
...

0x0007 R/o CTR112-127
Overflow signals for counters 112 to

127

Table 3.9: Positive overflow block layout. Base: 0x0700+0x0008

Gate error register (0x0700+0x0010)

The gate error register contains error information about the 12 gates; lsb
corresponds to gate 0. Bits 12 to 15 are not used.

Watchdog error block (0x0700+0x0011)

This block contains 4 registers for reporting watchdog error signals from the
54 input watchdogs. Within each register, lsb corresponds to the channel
with the lowest number. In case of IN48-53, 10 msbs are not used.

Word
offset

R/W Symbol Description

0x0000 R/o IN0-15
Watchdog error signals for inputs 0

to 15

0x0001 R/o IN16-31
Watchdog error signals for inputs

16 to 31

0x0002 R/o IN32-47
Watchdog error signals for inputs

32 to 47

0x0003 R/o IN48-53
Watchdog error signals for inputs

48 to 53

Table 3.10: Watchdog error block layout. Base: 0x0700+0x0011

Gate input monitoring register (0x0700+0x0017)

The gate input monitoring register contains the current input state of the 12
gates; lsb corresponds to the gate 0. Bits 12 to 15 are not used.

3.2. REGISTERS REFERENCE 19

Gate output monitoring register (0x0700+0x0018)

The gate output monitoring register contains the current output state of the
gate logic for all 12 gates; lsb corresponds to gate 0. Bits 12 to 15 are not
used.

Output monitoring register (0x0700+0x0019)

The output monitoring register contains the current state of the 6 interlock
outputs; lsb corresponds to output 0. Bits 6 to 15 are not used.

Gate state monitoring block (0x0700+0x001A)

This block contains 3 registers for reporting current state of the gate logic
state machines. Each register contains a 4-bit state ID for four gates.

Word
offset

R/W Symbol Description

0x0000 R/o GATE0-3 Current state for gates 0 to 3
0x0001 R/o GATE4-7 Current state for gates 4 to 7
0x0002 R/o GATE8-11 Current state for gates 8 to 11

Table 3.11: Gate state monitoring block layout. Base: 0x0700+0x001A

Bits Symbol Description

3–0 GATE0 State of gate N+0
7–4 GATE1 State of gate N+1
11–8 GATE2 State of gate N+2
15–12 GATE3 State of gate N+3

Table 3.12: Bit definition of gate state monitoring registers

20 CHAPTER 3. PROGRAMMERS INTERFACE

Value Symbol Description

0x0 IDLE Waiting for prepare
0x1 PREPARE Prepare received, waiting for gate signal

0x2 GATE
Gate signal asserted, waiting for

deassertion, output high
0x3 WAITING

0x4 ERROR Timout or forbidden sequence detected

0x5 RECOVER
Intermediate state in the error recovery

procedure

0x6 DIRECT GATE
Working in direct gate mode, input is

forwarded to output

Table 3.13: State IDs for gate logic. See Figure 2.5 for state explanation.

I/O slow control state monitoring register (0x0700+0x001D)

This register is used for monitoring the operation of the I/O slow-control
subsystem, which is responsible for enumerating I/O modules and controlling
front-panel LEDs. It is used solely for debugging purposes.

3.2.6 Control superblock (0x0800)

The control superblock contains registers basic device control and configu-
ration. For setting up patch matrices, see Sections 3.2.9 and 3.2.10. For
configuring the event framework, see Section 3.2.8.

Word
offset

R/W Symbol Description

0x0000 R/W WDOG TIMEOUT Watchdog timeout register
0x0001 R/W COUNTERS Counters control register
0x0002 R/W GATE MODE Gate mode register
0x0004 R/W GATE TIMEOUT Start of the gate timeout block
0x0010 R/W WD RESET Start of the watchdog reset block

Table 3.14: Control superblock layout. Base: 0x0800

Watchdog timeout register (0x0800+0x0000)

Configures the timeout for all watchdogs in 1024 ns steps. Watchdogs will
generate error if the input signal frequency is lower than 1/(WDOG TIMEOUT·

3.2. REGISTERS REFERENCE 21

1024ns). With 16-bit registers, the smallest programmable frequency is about
14.9Hz.

Counters control register (0x0800+0x0001)

The counters control register is used for:

1. Resetting all counters. This is an alternative for event-based control of
counter reset (see Section 3.3.2).

2. Enabling counter auto-reset. If counter auto-reset is enabled, the coun-
ters will clear their counts on the rising slope of incoming gate signal.

Bits Symbol Description

0 RESET Reset all counters
1 AUTORESET Enable counter auto-reset

15–2 (not used)

Table 3.15: Bit definition of the counters control register

Important: Counters remain in reset state as long as the
RESET bit is asserted!

TODO: Check if it’s true! By the way, this might be dangerous!

Gate mode register (0x0800+0x0002)

The gate mode register is used for configuring gates to direct mode; lsb
corresponds to the gate 0. Bits 12 to 15 are not used. Note that switching
a gate into direct mode is only possible when it’s in IDLE state (see Table
3.13).

Gate timeout block (0x0800+0x0004)

This block contains 12 registers for configuring individual timeouts for all
gates. Gate timeouts are configured in steps of 131.072µs. With 16-bit
registers, the longest possible timeout is about 8.5 s.

22 CHAPTER 3. PROGRAMMERS INTERFACE

Word
offset

R/W Symbol Description

0x0000 R/o GATE0 Timeout value for gate 0
...

0x000B R/o GATE11 Timeout value for gate 11

Table 3.16: Gate timeout block layout

Watchdog reset block (0x0800+0x0010)

This block contains 4 registers for resetting watchdog errors for the 54 input
watchdogs. Within each register, lsb corresponds to the channel with the
lowest number. In case of IN48-53, 10 msbs are not used.

A watchdog error reset procedure requires first asserting and then de-
asserting the relevant bit.

Word
offset

R/W Symbol Description

0x0000 R/o IN0-15
Watchdog reset signals for inputs 0

to 15

0x0000 R/o IN16-31
Watchdog reset signals for inputs

16 to 31

0x0000 R/o IN32-47
Watchdog reset signals for inputs

32 to 47

0x0000 R/o IN48-53
Watchdog reset signals for inputs

48 to 53

Table 3.17: Watchdog reset block layout

3.2.7 Event status superblock (0x0900)

The event status superblock allows monitoring the state of the event receiver
and the threshold loader.

3.2. REGISTERS REFERENCE 23

Word
offset

R/W Symbol Description

0x0000 R/o TAG LOW Last event tag low register
0x0001 R/o TAG HIGH Last event tag high register
0x0002 R/o CODE Last accepted tag register

0x0003 R/o
THR LOADER

STATE
Threshold loader state register

0x0004 R/o
THR LOADER

ITER

Threshold loader iterator
monitoring register

0x0005 R/o
THR LOADER

ENQ STATE

Threshold loader FIFO enqueue
framework state register

Table 3.18: Event status superblock layout. Base: 0x0900

Last event tag registers (0x0900+0x0000, 0x0900+0x0001)

The last event tag low and high registers show a full 32-bit value of the last
received tag. All tags are reported if events are enabled, even these with bad
key.

Last accepted tag register (0x0900+0x0002)

The last accepted tag register shows lower 16 bits (the code) of the last
accepted tag. Tags with bad key are not reported.

Threshold loader state register (0x0900+0x0003)

This register shows the current state of the threshold loader state machine.
It is used solely for debugging purposes.

Value Symbol Description

0x0 IDLE Idle, waiting for a trigger

0x1 WAIT1
Wait cycle to adapt for memory

latency

0x2 WAIT2
Wait cycle to adapt for memory

latency
0x3 READ Writing a value to a register

0x4 FINISH
Intermediate state to finish the

procedure

Table 3.19: State IDs for threshold loader

24 CHAPTER 3. PROGRAMMERS INTERFACE

Note that all states but IDLE are temporary.

Threshold loader iterator monitoring register (0x0900+0x0004)

The threshold loader cycles over all registers when reloading thresholds. This
register shows the number of the last iterated counter. It is used solely for
debugging purposes.

Threshold loader FIFO enqueue framework state register (0x0900+0x0005)

This register shows the current state of the FIFO enqueue framework state
machine for the threshold loader. It is used solely for debugging purposes.

TODO: Which value is for which source?

3.2.8 Event control superblock (0x0A00)

The event control superblock allows configuring the event receiver. Further,
it provides registers for manual triggering of the event-driven actions.

Word
offset

R/W Symbol Description

0x0000 R/W KEY Event key register
0x0001 R/W CTRL Event control register
0x0002 R/W THR RELOAD Threshold reload register
0x0003 R/W GATE PREP Gate prepare register
0x0004 R/W GATE RECOVER Gate recovery register

Table 3.20: Event control superblock layout. Base: 0x0A00

Event key register (0x0A00+0x0000)

This register defines the key for incoming events. For all incoming events,
their 16 msbs are compared with the key and only events witch matching
key are accepted.

Event control register (0x0A00+0x0001)

This register is used for enabling event-driven operation.

3.2. REGISTERS REFERENCE 25

Bits Symbol Description

0 EVT ENABLE Enable event-driven operation
15–1 (not used)

Table 3.21: Bit definition of the event control register

Threshold reload register (0x0A00+0x0002)

This register allows manual operation of the threshold loader. It is an alter-
native for event-driven operation (see Section 3.3.2 for more details).

In order to reload given group of counters with given dataset, one needs
to set up DATASET and GROUP and pulse TRIGGER. A transition of TRIGGER
from 0 to 1 will trigger the threshold reloading procedure. Setting DATASET,
GROUP and asserting TRIGGER can be done with a single write operation.
All operations are queued in a 16-place FIFO buffer and executed as quickly
as possible. Parallel register-driven and event-driven operation is possible
and safe.

Bits Symbol Description

7–0 DATASET Dataset to be loaded
11–8 GROUP Group of counters to be loaded to
12 TRIGGER Threshold reload trigger

15–13 (not used)

Table 3.22: Bit definition of the threshold loader control register

Gate prepare register (0x0A00+0x0003)

The gate prepare register is used for manual control of the prepare signal for
all the gates; lsb corresponds to the gate 0. Bits 12 to 15 are not used.

This is an alternative for event-based control of prepare signals (see Sec-
tion 3.3.2).

Important: Gates will react on the rising slope of the
prepare bit state. However, as long as certain bits in the
register are set, the state machine will stop in WAIT state
(see Figure 2.5) and prepare events for corresponding
gates will be disregarded. Therefore, concurrent event-
based and register-based operation is not recommended.

TODO: Check if it’s true!

26 CHAPTER 3. PROGRAMMERS INTERFACE

Gate recovery register (0x0A00+0x0004)

The gate recovery register is used to manually control error recovery for all
the gates; lsb corresponds to gate 0. Bits 12 to 15 are not used. A gate
recovery procedure requires first asserting and then deasserting the relevant
bit.

This is an alternative for event-based control of gate error recovery (see
Section 3.3.2).

3.2.9 Input matrix superblock (0x1000)

The input matrix register superblock is used to configure the input and gate
patch matrices (see Section 2.3.2). It contains one R/W register per counter
(a total of 128 registers).

Word
offset

R/W Symbol Description

0x0000 R/W CTR0
Counter 0 input configuration

register
...

0x007F R/W CTR127
Counter 127 input configuration

register

Table 3.23: Intput matrix configuration superblock layout. Base: 0x1000

Bits Symbol Description

5-0 UP SEL
Channel selection for upcounting input

(see Table 3.25 for values)

11-6 DOWN SEL
Channel selection for downcounting input

(see Table 3.25 for values)
15-12 GATE SEL Channel selection for gate input (0–11)

Table 3.24: Bit definition of input matrix superblock registers

3.2. REGISTERS REFERENCE 27

Value Symbol Description

0–53 INPUTnn Signal inputs 0–53
54 GND No signal
55 TEST 10K 10 kHz test signal
56 TEST 99K 99 kHz test signal
57 TEST 100K 100 kHz test signal
58 TEST 990K 990 kHz test signal
59 TEST 1M 1 MHz test signal
60 TEST 9M9 9.9 MHz test signal
61 TEST 10M 10 MHz test signal
62 TEST 24M9 24.9 MHz test signal
63 TEST 25M 25 MHz test signal

Table 3.25: Up/downcounting input mapping for counters

3.2.10 Output matrix superblock (0x1100)

The output matrix superblock is used to configure the output match matrix
(see Section 2.3.2).

This superblock contains a set of 6 sub-blocks, each 22 registers long. The
blocks are placed with a raster of 32 addresses, as stated in Table 3.26. Each
sub-block defines the configuration of one output, as shown in Table 3.27.

Word
offset

R/W Symbol Description

0x0000 R/W OUT0 Start of output 0 block
0x0020 R/W OUT1 Start of output 1 block

...
0x00A0 R/W OUT5 Start of output 5 block

Table 3.26: Output matrix configuration superblock layout. Base: 0x1100

28 CHAPTER 3. PROGRAMMERS INTERFACE

Word
offset

R/W Symbol Description

0x0000 R/W NEG OVF
Start of the negative counter
overflow selection subblock

0x0008 R/W POS OVF
Start of the positive counter
overflow selection subblock

0x0010 R/W GATE ERR Gate error selection register

0x0011 R/W WD ERR
Start of the watchdog error

selection subblock

0x0015 R/W
GATE IN

FORWARD

Gate input forward selection
register

Table 3.27: Output matrix configuration block for a single output.
Base: 0x1100+n·0x0020

Counter overflow selection subblocks
(0x1100+n·0x0020+0x0000, 0x1100+n·0x0020+0x0008)

These two identical subblocks allow selecting which counters will forward
their negative and positive counter overflow signal to the given output. There
is one bit per counter; for each register lsb always corresponds to the counter
with lowest number.

Word
offset

R/W Symbol Description

0x0000 R/W CTR0-15 Counters 0–15
...

0x0007 R/W CTR112-127 Counters 112–127

Table 3.28: Counter overflow selection subblocks layout.
Base: 0x1100+n·0x0020+0x0000, 0x1100+n·0x0020+0x0008

Gate error selection register (0x1100+n·0x0020+0x0010)

This register allows selecting which gates will forward their error signal to
the given output. There is one bit per gate; lsb corresponds to gate 0. Bits
12 to 15 are not used.

3.2. REGISTERS REFERENCE 29

Watchdog error selection subblock (0x1100+n·0x0020+0x0011)

This subblock allows selecting which input watchdogs will forward their error
signal to the given output. There is one bit per input; for each register lsb
always corresponds to the input with lowest number.

Word
offset

R/W Symbol Description

0x0000 R/W IN0-15 Inputs 0–15
0x0001 R/W IN16-31 Inputs 16–31
0x0002 R/W IN32-47 Inputs 32–47
0x0003 R/W IN48-53 Inputs 48–53 (bits 6–15 unused)

Table 3.29: Watchdog error selection subblocks layout.
Base: 0x1100+...+0x0011

Gate input forward selection register (0x1100+n·0x0020+0x0015)

This register allows selecting which gate insputs will be forwarded to the
given output. There is one bit per gate; lsb corresponds to gate 0. Bits 12
to 15 are not used.

3.2.11 Counter readout superblock (0x1200)

The counter readout register superblock contains 128 two-register blocks to
read out current count value. Table 3.31 shows a layout of a single block.

The two registers form a 32-bit U2 signed integer which is the count value.

Word
offset

R/W Symbol Description

0x0000 R/o CTR0 Counter 0 readout block
0x0002 R/o CTR1 Counter 1 readout block

...
0x00FE R/o CTR127 Counter 127 readout block

Table 3.30: Counter readout superblock layout. Base: 0x1200

30 CHAPTER 3. PROGRAMMERS INTERFACE

Word
offset

R/W Symbol Description

0x0000 R/o LOW lsbs of the count value
0x0001 R/o HIGH msbs of the count value

Table 3.31: Counter readout block layout for a single counter.
Base: 0x1200+n·0x0002

3.2.12 Counter group assignment superblock (0x1600)

The counter group assignment superblock contains one R/W register per four
counters (a total of 32 registers) for assigning counters to groups. Group
numbers are four bits wide (0 to 15).

Word
offset

R/W Symbol Description

0x0000 R/W CTR0-3 GROUP Group assignment for counter 0–3
...

0x001F R/W
CTR124-

127 GROUP

Group assignment for counters
124–127

Table 3.32: Counter group assignment superblock layout. Base: 0x1600

Bits Symbol Description

3–0 CTR0 Group selection for counter 4·N+0
7–4 CTR1 Group selection for counter 4·N+1
11–8 CTR2 Group selection for counter 4·N+2
15–12 CTR3 Group selection for counter 4·N+3

Table 3.33: Bit mapping of group assignment register N

3.2.13 Threshold readout superblock (0x1800)

The threshold readout register superblock contains 128 four-register blocks to
read out currently programmed threshold values. Table 3.34 shows a layout
of a single block.

Register pairs form 32-bit U2 signed integers which are the threshold
values. Note that for correct operation, the positive threshold must be a
positive number and the negative threshold must be a negative number.

Threshold programming is possible only via threshold memory (see Sec-
tion 3.2.14).

3.2. REGISTERS REFERENCE 31

Word
offset

R/W Symbol Description

0x0000 R/o CTR0 Counter 0 threshold readout block
0x0004 R/o CTR1 Counter 1 threshold readout block

...

0x01FC R/o CTR127
Counter 127 threshold readout

block

Table 3.34: Counter readout superblock layout. Base: 0x1800

Word
offset

R/W Symbol Description

0x0000 R/o POS THR LOW lsbs of the positive threshold
0x0001 R/o POS THR HIGH msbs of the positive threshold
0x0002 R/o NEG THR LOW lsbs of the negative threshold
0x0003 R/o NEG THR HIGH msbs of the negative threshold

Table 3.35: Threshold readout block layout for a single counter.
Base: 0x1800+n·0x0004

3.2.14 Threshold memory (0x8000)

Threshold memory is used for providing threshold data. It’s mapped into
the device’s register addres space. It contains space for 32 complete datasets.
The datasets are stored as consecutive blocks. The data format for a single
dataset is equal with the data format for threshold readout superblock (see
Table 3.34).

The threshold memory is freely readable and writable by user. Two-port
Random Access Memory (RAM) architecture allows user operations even
while threshold loading with no dangerous side effects.

Comment: An intermittent data inconsistency is possible if a
dataset is written during threshold loading with the same dataset.
In this case, partly new and partly old data can be loaded.

32 CHAPTER 3. PROGRAMMERS INTERFACE

Word
offset

R/W Symbol Description

0x0000 R/W RAM DATASET0
Thresholds for dataset 0 as
described in Table 3.34

...

0x3E00 R/W RAM DATASET31
Thresholds for dataset 31 as

described in Table 3.34

Table 3.36: Threshold memory layout. Base: 0x8000

3.3 Event decoding

3.3.1 Event tag

Every event tag contains three main parts, as stated in Table 3.37: event
key , event command and event parameter.

Bits Symbol Description

11-0 EV PARAM Event parameter
15-12 EV CMD Event command
31-16 EV KEY Event key

Table 3.37: Bit mapping for an event tag

Event key

Event key is used to filter event tags. Only these tags are accepted, where
event key matches the setting stored in EVT CTRL.KEY register (see Section
3.2.8.)

Event command

Event command defines the action to be executed. A full list of commands
is presented in Table 3.38. See Section 3.3.2 for more detailed description of
each command.

3.3. EVENT DECODING 33

Value Symbol Description

0x0 EVT CMD NOP Do nothing

0x1
EVT CMD

RELOAD THR
Reload thresholds

0x2 EVT CMD PREPARE Prepare gates
0x3 EVT CMD RECOVER Recover gates

0x4
EVT CMD

RESET CTR
Reset all counters

0x5–0xD Reserved for future use

0xE–0xF
Reserved for development and

debugging

Table 3.38: Event command numbers

Event parameter

Event parameter contains supplementary information. Its interpretation de-
pends on the command. See Section 3.3.2 for details.

3.3.2 Event commands

Do nothing

This command is guaranteed to do nothing in the current and future firmware
releases.

Bits Symbol Description

11–0 (not used)

Table 3.39: Parameter bits for ’Do nothing’ command

Reload thresholds

Perform threshold reload for given group of counters and with given dataset.
Group and dataset numbers are provided via event parameter as shown in
Table 3.40.

This command has the same effect as using EVT CTRL.THR RELOAD reg-
ister (see Section 3.2.8).

34 CHAPTER 3. PROGRAMMERS INTERFACE

Bits Symbol Description

7–0 DATASET Dataset to be loaded
11–8 GROUP Group of counters to be loaded to

Table 3.40: Parameter bits for ’Reload thresholds’ command

Prepare gates

Send prepare signal to selected gates. Gates to be affected are selected by
event parameter as shown in Table 3.41.

This command has the same effect as using EVT CTRL.GATE PREP register
(see Section 3.2.8).

Bits Symbol Description

0 GATE0 Apply for gate 0
...

11 GATE11 Apply for gate 11

Table 3.41: Parameter bits for ’Prepare gates’ command

Recover gates

Recover selected gates from error state. Gates to be affected are selected by
event parameter as shown in Table 3.42.

This command has the same effect as using EVT CTRL.GATE RECOVER

register (see Section 3.2.8).

Bits Symbol Description

0 GATE0 Apply for gate 0
...

11 GATE11 Apply for gate 11

Table 3.42: Parameter bits for ’Recover gates’ command

Reset all counters

Set all counters to 0. This command has the same effect as using CTRL.COUNTERS:RESET

bit (see Section 3.2.6).

3.3. EVENT DECODING 35

Bits Symbol Description

11–0 (not used)

Table 3.43: Parameter bits for ’Reset all counters’ command

36 CHAPTER 3. PROGRAMMERS INTERFACE

Index

BLM crates, 6
Constraints, 2
Indexed terms, 2
Version numbers, 3
Bit groups, 13
Bits, 13
Blocks, 13
Counter pool, 8
Dataset, 9
Direct gate mode, 10
Event command, 32
Event key, 32
Event parameter, 32
Event tag, 12
Event, 12
Gate inputs, 6
Gate logic, 8
Gate patch matrix, 8

Groups, 9

Input patch matrix, 8

Input watchdogs, 8

Interlock outputs, 6

Negative threshold, 8

Output patch matrix, 8

Overflow signal, 8

Positive threshold, 7

Prepare signal, 10

Registers, 13

Reserved terms, 2

Subblocks, 13

Superblocks, 13

Threshold laoder, 8

Threshold memory, 8

Threshold reload, 10

Up/down counter, 7

37

38 INDEX

All musts

definition of must, 3
definition of must not, 3

negative threshold values, 30

positive threshold values, 30

register names, 13

39

40 ALL MUSTS

Todos

Check if it’s true, 25

By the way, this might be
dangerous, 21

Version numbers, 3

Which value is for which source?,
24

41

42 TODOS

Acronyms

BLM Beam Loss Monitor

DIOB Digital I/O Board

ECA Event-Condition-Action

FBAS Fast Beam Abort System

FIFO First-In-First-Out

I/O input/output

LED Light-Emitting Diode

lsb least significant bit

msb most significant bit

RAM Random Access Memory

SCU Scalable Control Unit

TTL Trasnsistor-Transistor Logic

U2 two’s complement code

43

44 TODOS

List of Figures

2.1 A possible system layout . 5
2.2 The BLM crate . 6
2.3 A single up/down counter . 7
2.4 Block diagram of the device 9
2.5 State diagram of the gate logic. Green arrows show the normal

operation sequence . 11

45

46 LIST OF FIGURES

List of Tables

1.1 Summary of styles . 2
1.2 Constraints and reserved terms 3

2.1 I/O module types used . 7

3.1 General layout of register blocks 14
3.2 DIOB configuration and status superblock layout. Base: 0x0630 15
3.3 Bit definition of IO backplane mask registers 15
3.4 DIOB configuration and status superblock layout. Base: 0x0638 15
3.5 Bit definition of IO backplane ID registers 16
3.6 IDs for used I/O module types 16
3.7 Status superblock layout. base: 0x0700 17
3.8 Negative overflow block layout. Base: 0x0700+0x0000 17
3.9 Positive overflow block layout. Base: 0x0700+0x0008 18
3.10 Watchdog error block layout. Base: 0x0700+0x0011 18
3.11 Gate state monitoring block layout. Base: 0x0700+0x001A . . 19
3.12 Bit definition of gate state monitoring registers 19
3.13 State IDs for gate logic. See Figure 2.5 for state explanation. . 20
3.14 Control superblock layout. Base: 0x0800 20
3.15 Bit definition of the counters control register 21
3.16 Gate timeout block layout . 22
3.17 Watchdog reset block layout 22
3.18 Event status superblock layout. Base: 0x0900 23
3.19 State IDs for threshold loader 23
3.20 Event control superblock layout. Base: 0x0A00 24
3.21 Bit definition of the event control register 25
3.22 Bit definition of the threshold loader control register 25
3.23 Intput matrix configuration superblock layout. Base: 0x1000 . 26
3.24 Bit definition of input matrix superblock registers 26
3.25 Up/downcounting input mapping for counters 27
3.26 Output matrix configuration superblock layout. Base: 0x1100 27

47

48 LIST OF TABLES

3.27 Output matrix configuration block for a single output.
Base: 0x1100+n·0x0020 . 28

3.28 Counter overflow selection subblocks layout.
Base: 0x1100+n·0x0020+0x0000, 0x1100+n·0x0020+0x0008 . 28

3.29 Watchdog error selection subblocks layout.
Base: 0x1100+...+0x0011 . 29

3.30 Counter readout superblock layout. Base: 0x1200 29
3.31 Counter readout block layout for a single counter.

Base: 0x1200+n·0x0002 . 30
3.32 Counter group assignment superblock layout. Base: 0x1600 . . 30
3.33 Bit mapping of group assignment register N 30
3.34 Counter readout superblock layout. Base: 0x1800 31
3.35 Threshold readout block layout for a single counter.

Base: 0x1800+n·0x0004 . 31
3.36 Threshold memory layout. Base: 0x8000 32
3.37 Bit mapping for an event tag 32
3.38 Event command numbers . 33
3.39 Parameter bits for ’Do nothing’ command 33
3.40 Parameter bits for ’Reload thresholds’ command 34
3.41 Parameter bits for ’Prepare gates’ command 34
3.42 Parameter bits for ’Recover gates’ command 34
3.43 Parameter bits for ’Reset all counters’ command 35

Bibliography

49

