
Concept for WR-based linac timing system

• Present situation
• UNILAC multiplex operation, Pulszentrale in a nutshell
• Altering operational circumstances
• Timing constraints

• Going for FAIR
• From Pulszentrale to Datamaster
• Deriving UNILAC & pLinac schedules for FAIR
• Schedule translation: Existing & FAIR control system
• Implement schedule for datamaster: Event sequence, supercycle
• Specialities
• Schedule creation and datamaster operation: System view

• Missing & drawbacks

• Timing Groups
1



UNILAC multiplex operation

2

Parallel setup, time multiplex

Parallel operation per pulse / cycle, space multiplex



UNILAC Pulszentrale (UPZ) in a nutshell

• Operating scenario
• One main user gets up to 50 Hz
• Secondary users get up to 5 Hz
• SIS18 handled upon request, merely “perturbation” of 

UNILAC operation
• Prerequisite of uninterrupted operation for stability 

reasons, e.g. beams with interlock continue to operate 
w/o beam

• Based on repetition rates & requests
• Operation defined by nominal repetition rates for 

sources and beams
• Complemented by beams upon request
• No way foreseen to maintain strict rates, order or 

periodicity of beams

• Source driven
• Repetition rates for sources are applied strictly*
• Whenever a source is ready, UPZ looks for consumer

• Priority driven
• Simple, but highly efficient concept, based on counters
• Infrequent beams are privileged, frequent beams lose 

pulses; nominal repetition rates are rarely matched
• Unused cycles used for secondary tasks individually 

per timing section
• Some exceptions handled, e.g. SIS18 requests, 

increasing complexity

• Real time system
• UPZ takes decisions for next cycle, no further 

knowledge by concept
• Devices have to follow within 15 ms
• Taking slow or limited devices into account is 

cumbersome
• Requests handled ad hoc, requestor has to wait for 

next available source pulse
• Specialities (profile grid guard) handled on best effort 

basis

*: alternatively operation upon request only is possible
3



UNILAC event sequence: Fix – except pulse lengths

Sources Accelerator

Operating parameters (pulse lengths)
Connection source-accelerator timing
(ion beam pulse start & stop at source)

Cycle length (20 ms)

4

Connection to absolute time



Altering operational circumstances

• UNILAC becomes FAIR injector
• Timely beam delivery to SIS18 gets highest priority to support FAIR performance
• UNILAC users become second priority
• Handling SIS18 requests becomes more frequent, demanding

• Facility increase
• Additional sources and linacs: pLinac, 3rd source terminal at HSI, 2nd source terminal at HLI, CW linac?

• Tightening boundary conditions from UNILAC devices:
• Sources: Booster mode vs. service life
• Alvarez 4: Operation in narrow repetition rate window
• HSI: High-Bρ-limit, so far only considered in “planning”
• Magnet cycling restrictions increase in numbers (TK, HSI, QQ, Alvarez DT quads)
• TK: Long preparation time (already incorporated)
• Some UNILAC users longing for strictly periodic provisioning
• More stringent observation of PG guard needed due to higher beam intensities

⇒ More sophisticated planning and control of scheduling needed
5



Timing constraints (examples)

• UNILAC has to be operated at 50 pulses/s without any interruptions

• Sources: 
• have to be pulsed most regularly (stability)
• may be used for fast booster cycles
• may not be used frequently for long (overheating)
• may not be used too infrequently (reliablity)
• should be used as few as possible (service life)

• Alvarez 4:
• has to be used with 5-10 Hz (!), i.e. pulsed every 100-200 ms (every 5th - 10th cycle)

• TK:
• needs to be prepared 200 ms before beam pulse when changing beam
• can be used faster for repetitions of same beam

• HSI-RF: 
• rigid beams at maximum 5 Hz, only limited observance implemented in Pulszentrale

• Profile grid guard:
• limit beam pulses on grids to 2,5 Hz in total, only limited observance implemented in 

Pulszentrale
6



Concept for WR-based linac timing system

• Present situation
• UNILAC multiplex operation, Pulszentrale in a nutshell
• Altering operational circumstances
• Timing constraints

• Going for FAIR
• From Pulszentrale to Datamaster
• Deriving UNILAC & pLinac schedules for FAIR
• Schedule translation: Existing & FAIR control system; excursion: Terms
• Implement schedule for datamaster: Event sequence, supercycle
• Specialities
• Schedule creation and datamaster operation: System view

• Missing & drawbacks

• Timing Groups
7



From Pulszentrale to Datamaster

UNILAC Pulszentrale

• integrated real time scheduling
• “simple” priority system
• very efficient, uses every pulse
• allows for on-demand requested pulses
• hard to implement more sophistication or 

to plan in advance
• no strict control of operation (≠ sources)
• relies on fast, flexible devices (unlimited 

resources)
• becomes tricky with slow, restricted 

devices

• ensures uninterrupted operation 

• prompt beam delivery for SIS18 
actually can not be ensured

Datamaster

• pre-planned periodic/looped schedule
• sophisticated planning tool could be realized 

in software
• pre-planned schedule can not be changed in 

real time
• drop concept of requested beams
• enables optimal use of limited resources by 

arbitration
• enables prompt delivery to SIS18, maximize 

FAIR efficiency; contingency for setup

• has to ensure uninterrupted operation

• limited real time reactions needed for 
UNILAC (PG guard)

8



UNILAC
pLinac
SIS18

SIS100
CR

HESR

SIS18 defines beams 
from UNILAC & pLinac

LSA Basics for Developers, J. Fitzek

Deriving UNILAC & pLinac schedules part 1: Infer FAIR requests

9

Available / defined
linac beams

from UNILAC
from pLinac

Patterns / BPCs … to SIS18



UNILAC
pLinac
SIS18

SIS100
CR

HESR

SIS18 defines beams 
from UNILAC & pLinac

LSA Basics for Developers, J. Fitzek

FAIR global periodicity

from UNILAC
from pLinac

Patterns / BPCs … to SIS18

Periodic pattern,
predetermined, fixed

…

local

Modular schedule: 
flexible, memory conserving, adaptable to schedule 

changes at FAIR, complex to plan and implement

Monolithic schedule:
inflexible, memory consuming, static, 

easy to plan and implement

Deriving UNILAC & pLinac schedules part 2: Add local linac beams

(modular local patterns)

10

Available / defined
linac beams

Starting point:
Upgrade 
stepwise 

as needed



Deriving UNILAC & pLinac schedules part 3: Building the schedule

3) Add UNILAC and pLinac
local BPCs, stabilizers, conditioners, …
keep concept of repetition rates

… …

1) FAIR requests:
beam pulses & timing …

2) Extract UNILAC & pLinac
BPCs and timing, 
allocate timing groups,
add resources

A4
TK

ALV
…

HSI
QR
QL

pLinac

FAIR global periodicity

4) Optimize …

11

time



VirtAcc 15: Stabilizer, individual settings for every timing section

VirtAcc

Timing sections

HSI HLI ALV EH TK

01 01 - 01 - 01

02 - 02 02 02 -

03 - 03 - - -

04 04 - - - -

05 - - - - 05

15 15-HSI 15-HLI 15-ALV - 15-TK

Virtual accelerators

Schedule translation: Existing control system

Superzyklus

Pulse VirtAcc HSI HLI ALV EH TK SIS18
1 1+3 01 03 01 - 01 SIS_A
2 2+5 - 02 02 02 05
3 2 - 02 02 02 -
4 2+4+5 04 02 02 02 05
5 2 - 02 02 02 -
6 1+3 01 03 01 - 01 SIS_B
… … … … … … …

Particle Transfer HSI
Particle Transfer ALV

Particle Transfer TK

Particle Transfer EH

Particle Transfer HLI

VirtAcc 01
VirtAcc 02
VirtAcc 03
VirtAcc 04
VirtAcc 05

12



VirtAcc 15: Stabilizer, individual settings for every timing section

Sequence = VirtAcc

VirtAcc

Timing sections

HSI HLI ALV EH TK

01 01 - 01 - 01

02 - 02 02 02 -

03 - 03 - - -

04 04 - - - -

05 - - - - 05

15 15-HSI 15-HLI 15-ALV - 15-TK

Virtual accelerators Beam processes, beam production chains, sequences

BPC

Pulse Sequence HSI HLI ALV EH TK SIS18

1 1A+3 HSI01 HLI03 ALV01 - TK01 SIS_BPC_A

2 2+5 - HLI02 ALV02 EH02 TK05

3 2 - HLI02 ALV02 EH02 -

4 2+4+5 HSI04 HLI02 ALV02 EH02 TK05

5 2 - HLI02 ALV02 EH02 -

6 1B+3 HSI01 HLI03 ALV01 - TK01 SIS_BPC_B

… … … … … … …

Superzyklus Pattern

BPC / Sequence

Particle Transfer / Timing Group

HSI HLI ALV EH TK

01 HSI01 - ALV01 - TK01

02 - HLI02 ALV02 EH02 -

03 - HLI03 - - -

04 HSI04 - - - -

05 - - - - TK05

15 HSI15 HLI15 ALV15 - TK15

Pattern

Pulse VirtAcc HSI HLI ALV EH TK SIS18
1 1+3 01 03 01 - 01 SIS_A
2 2+5 - 02 02 02 05
3 2 - 02 02 02 -
4 2+4+5 04 02 02 02 05
5 2 - 02 02 02 -
6 1+3 01 03 01 - 01 SIS_B
… … … … … … …

Example schedule: Translation to FAIR control system

13

Existing control system FAIR control system



Implementation: UNILAC beam process

Sources Accelerator

14

Beam process (= event sequence)

Beam process (= event sequence)
associated to timing group

BPID

BPID

BPID

BPID



• Supercycle (pattern, schedule) as loop / periodic graph
• Nodes contain beam processes

• Required procedures:
• Supercycle exchange
• Beam process exchange (all BP of one BPC atomic)
• SC / BP exchange independent, without interruption
• Additionally real time, “instantaneous” adaptations of beam 

processes, e.g. PG guard

• Graphs may get large (50 nodes/s, >100s)
• Nodes contain redundant information
• Change of one beam process applies to many copies
• Change of large pattern graph expensive, unnecessary

⇒ Separate beam processes (=event message data) from graph

15

Implementation: Linac supercycle

1

4

1

1

3

3

1

1

1

1

2

1

1

2 2 5

2 2 2

2 2 2 5

2 2 2



1

4

1

1

3

3

1

1

1

1

2

1

1

2 2 5

2 2 2

2 2 2 5

2 2 2

1 1 1

2 2 2

3

5

1 / 1 / 3 / - / 1

- / 2 / 2 / 2 / 5

- / 2 / 2 / 2 / -

4 / 2 / 2 / 2 / 5

- / 2 / 2 / 2 / -

1 / 1 / - / - / 1

1 / 1 / 3 / - / 1

4

Separating supercycle
and beam processes

• Event message data (beam processes) stored separately
• One node per beam process per timing group

• Graph contains beam process indices only
• Beam processes called from supercycle, need pointers
• Event messages generated
• Callback to supercycle (not shown)
• Reduced memory usage

• Exchange of beam process
• Generate nodes with new version of all beam processes 

belonging to one BPC
• Change all pointers from supercycle to nodes
• Atomic operation!

• ⇒ Reduce number of pointers to be changed

• ⇒ Merge beam process nodes to chain nodes

16

1 1 1

2 2 2

3

5

1 / 1 / 3 / - / 1

- / 2 / 2 / 2 / 5

- / 2 / 2 / 2 / -

4 / 2 / 2 / 2 / 5

- / 2 / 2 / 2 / -

1 / 1 / - / - / 1

1 / 1 / 3 / - / 1

4

1 1 1

X X X

1 1 1

1 1 1

2 2 2

3

5

1 / 1 / 3 / - / 1

- / 2 / 2 / 2 / 5

- / 2 / 2 / 2 / -

4 / 2 / 2 / 2 / 5

- / 2 / 2 / 2 / -

1 / 1 / - / - / 1

1 / 1 / 3 / - / 1

4

1 1 1

X X X

BPC 1

BPC 1

BPC 2

BPC 3

BPC 4

BPC 4



Merge beam processes,
insert abstraction layer

• Merge beam process nodes to one BPC node 
• Contains all timing messages, hence all information 

for one beam production chain

• Hide BPC nodes by static wrappers
• Contain only pointer to BPC node
• Many pointers in supercycle direct to static wrapper

⇒ pointers and supercycle not affected by BPC 
exchange

• Supercycle and wrappers contain only BPC index

• Exchange of beam process
• Generate one new node with new version of BPC 

timing messages
• Change one pointer from wrapper to this node

17

1 1 1

2 2 2

3

5

4

1111

1112

3

4

5

2

3

1

4

5

1 / 1 / 3 / - / 1

- / 2 / 2 / 2 / 5

- / 2 / 2 / 2 / -

4 / 2 / 2 / 2 / 5

- / 2 / 2 / 2 / -

1 / 1 / - / - / 1

1 / 1 / 3 / - / 1

1111

1112

3

4

5

2

3

1

4

5

1, 3

2, 5

2

2, 4, 5

2

1

1, 3

3

X



Supercycle execution

• Single supercycle

• Multithreaded, one worker thread per BPC
• Branch to BPC node if index in cycle

• Generate timing messages for BPC

• Callback

• Go to next supercycle node

• Synchronization mechanism available

• Arbitration mechanism available
• thread with nearest event gets executed next

18

1, 3

2, 16

2

2, 4, 5

2

1

1, 3

2

3

1

16

Worker thread 1

Worker thread 2

Worker thread 3

Worker thread 16



Standard operation features

• Changing beam pulse length
• Aim: Change length of source or beam pulse, source advance, …
• Occurrence: Frequently, should be quick

• Can be done without interference of pattern or other beam processes
• Generate new version of corresponding node
• Load new version into datamaster
• Change pointer to new version
• Delete old versions (optional)

• Changing supercycle
• Aim: Introduce new beam, change execution rate of beam or source, …
• Occurrence: Seldom, may take some time, may not interrupt operation, 

has side effects on accelerator (magnet hysteresis, rf)
• Generate new supercycle
• Load new supercycle into datamaster
• At exit point of old supercycle, switch to corresponding entry point in new
• Delete old supercycle (optional)

19



Real time reaction: PG guard

• Profile grid guard needs two adaptations
• Reduction of pulse length

• = adaptation of beam process
• Variant 1: Always generate second version of beam process with reduced pulse length, switch 

pointer; needs second wrapper
• Variant 2: Include alternative, conditional timing messages for both, switch by tag

• Reduction of beam pulses
• Execution of pulses without beam by tagging of normal beam process

• Corresponding action (w/o pulse or reduced length) has to be predefined in 
supercycle coherently per pulse for all BPCs

• Real time reactions: 
• Determine all beam production chains affected by PG guard setting (outside 

datamaster?)
• Signal to datamaster BPCs affected
• Switch pointers and / or tag BPCs

20



Periodic TK on demand
Simple approach:

• Create supercycles w/o and with periodic TK execution

• On request switch between supercycles

• Requires base supercycle + one per BPC to be switched

Flexible approach: 

• Reserve cycles [TK] in supercycle for periodic execution of any appropriate 
BPC in TK

• Attach reserved cycles [TK] to VOID

• On request, attach [TK] to requested BPC

Problems:

• Gets tricky when several BPCs (from >1 sources) are involved

• Reserve all resources possibly needed (sources!) for all [TK] cycles

• Leave enough cycles between [TK] and all other involved BPCs

• May have large impact on beam delivery performance

• Difficult to use reserved cycles when no periodic execution is requested
21

TK

2

TK

5

6

TK

4

1

TK

2

6

1

void

1

2

6

1

TK

BPC 1 as requested by SIS18

Reserved for periodic in TK 
on request



Shorten BPC (Zwischenziel)

Approach:

• Create alternative set of BPs for BPC, incorporate only BPs for TGs of 
shorter beam path

• Switch to alternative set

• Optional: Add rf stabilisation for then unused TGs, but in Pause!

Comment:

• Dirty: Mechanism does not care where the beam is dumped!!!

• If pulse length is changed, all BP-sets have to be changed always

22



23

UNILAC schedule creation

UNILAC-SIS18 beam pulses
derive timing from FAIR pattern
on time, fixed, contingency

Def. UNILAC-local user beams
ion, energy; -> BPC, BPs, settings

Define ion source pulses
timing by repetition rate range

Define ion sources
ion (element, isotope, charge state)

Def. UNILAC-SIS18 beams
ion, energy; -> BPC, BPs, settings

SIS18 beams
ion, energy, …

FAIR pattern
…

UNILAC-local users beam pulses
timing by repetition rates as today
+ features (strict rate, order, bursts, …)

Optimisation & Check
level rates, order, remove source pulses …
check compliance with rules and limits
statistics
finalize pattern

Merge source & UNILAC-SIS18
+ add residual source pulses

Add UNILAC-local users
Add auxiliaries

UNILAC auxiliaries
stabilisation, conditioning

Send to datamaster

Display & approve
set optimisation targets
manual intervention

IPD > ??? PZU > ??? UPZ > LSA

Pulse length
Event messages 

per BP(C); template

Supercycle

Event / timing message sequence

?



UNILAC datamaster operation

24

Supercycle A

Supercycle B

BPs 1

BPs 2

BPs 3

Supercycle generation

UNILAC
Ion source rate
Beam rep. rate
Stabilization …
Enable periodic

SIS18
energy, cooling, extraction …

FAIR pattern

BPs 1’

BPs 2’

BPs 3’

BPs 1n

Pulse length

BPs 1n’

Real time on demand switching
• PG guard: switch affected BPC to BPC’
• Shorten BPC: switch from BPC to BPC’ 
• Periodic TK: switch to alternate supercycle

Create / purge BPC

Datamaster

BPs n

Include / exclude BP(C)

⁞ ⁞ ⁞

Event / timing message sequence



Missing & drawbacks
• Missing

• generating exit & entry points for supercycles; poor man’s solution: start / end of periodicity
• integrity checks
• rarely executed FAIR BPCs (storage rings with long cycle times)
• …

• Long FAIR periodicity:
• Large pre-calculated patterns need lots of memory in datamaster
• Resort: Use several small periodic patterns in hierarchical pattern structure, branch as needed
• Complex to build, care for transitions

• UNILAC pattern / supercycles would have to be adapted to any change in SIS18 …
• … pattern

• Modularize UNILAC pattern similar to SIS18 pattern (see above)
• Enable single execution of extra patterns
• Challenges mentioned above

• … cycle time
• Introduce buffer times to allow (small) changes in SIS18 cycle time during setup
• Eliminate buffer times on stable SIS18 operation
• Needs UNILAC-SIS18 sync as now, SIS18 waiting for UNILAC

• Non-periodic beam requests could be handled in the same way

25



26



Timing Groups

• Fragen zu (Super-)Timing Groups:
• Dipole in der EH kompatibel mit FAIR-TG-Konzept?
• Super-Timing Groups durch Ausmaskieren der Event-ID?
• GUN6MU2_TO_UCW eigenes Timing oder HLI-Timing?
• 2. Quelle HLI?

• Intern zu klären:
• STG Poststripper inkl. UT1MK0, UT1MK1 bis inkl. UT2MK2? Oder eigene TG 

UT1MK1_TO_UT2MK2 notwendig?
• Wie wird eigentlich zur Zeit das Timing in UH1 gemacht? An sich UH-Timing, 

aber Pulslänge=Quellenpulslänge(UR,UL)? 

27



Timing Groups: EH dipole

28



Backup

29



Sequence = VirtAcc
Sequence 02: “not necessarily the same Sequence index between 

particle transfers”

Beam processes, beam production chains, sequences

Excursion: Terms

BPC

Pulse Sequence HSI HLI ALV EH TK SIS18

1 1A+3 HSI01 HLI03 ALV01 - TK01 SIS_BPC_A

2 2+5 - HLI02 ALV02 EH02 TK05

3 2 - HLI02 ALV02 EH02 -

4 2+4+5 HSI04 HLI02 ALV02 EH02 TK05

5 2 - HLI02 ALV02 EH02 -

6 1B+3 HSI01 HLI03 ALV01 - TK01 SIS_BPC_B

… … … … … … …

Pattern

BPC / Sequence

Particle Transfer / Timing Group

HSI HLI ALV EH TK

01 HSI01 - ALV01 - TK01

02 - HLI02 ALV02 EH02 -

03 - HLI03 - - -

04 HSI04 - - - -

05 - - - - TK05

15 HSI15 HLI15 ALV15 - TK15

02 - HLI02 ALV07 EH06 -

Pattern

field = beam process
row = beam production chain (same colour)
row = sequence (=virtacc?)

field = beam process
row = pulse / UNILAC cycle (50 Hz)
row = several beam production chains (same colour) simultaneously
row = several sequences simultaneously

(but in variable combinations)
= pattern

The same UNILAC-BPC may serve several SIS18-BPCs (01>A, 01>B)
-> different sequences / BPCs?
-> DeviceAccess!

30



-

-

-

-

-

1 1

1 1

1 1

5

5

4

1

4

1

1

3

3

1

1

1

1

2

1

1

2 2 5

2 2 2

2 2 2 5

2 2 2

• Supercycle (pattern, schedule) as loop / periodic graph
• Nodes contain beam processes
• Two approaches

• Monolithic: Whole schedule in one loop, all beam processes for cycle 
in one node 

• One loop per timing group: More flexible, needs synchronization

• Required procedures:
• Supercycle exchange
• Beam process exchange (all BP of one BPC atomic)
• SC / BP exchange independent, without interruption
• Additionally real time, “instantaneous” adaptations of beam 

processes, e.g. PG guard

• Graphs may get large (50 nodes/s, >100s)
• Nodes contain redundant information
• Change of one beam process applies to many copies
• Change of large pattern graph expensive, unnecessary

⇒ Separate beam processes (=event message data) from 
graph

31

Implementation: Linac supercycle



Change beam process 1

1

1

1

1

2

3

1

2

3

1

3

1

1

2

3

1

1

1

1

2

3

1

2

3

1

3

1

1

2

3

1

1

1

1

2

3

1

2

3

1

3

1

1

2

3

1

1

1

1

2

3

1

2

3

1

3

1

1

2

3

2) Switching all pointers: Has to be done atomic, simultaneously for all (up to ~40) timing groups

Timing 
group

QL

Timing 
group

HSI

Timing 
group

ALV

Timing 
group

TK

1) New beam process provided

32



Change beam process 2

1

1

1

1

Structure:
• Only one supercycle
• One static first layer wrapper per BPC / sequence
• One second layer wrapper per BPC / sequence
• One set of beam processes per BPC / sequence, one BP per timing group
• All beam processes of one set called from second order wrapper

Change beam process:
• Provide new set of beam processes incl. new second layer wrapper, w/o 

connection to first layer
• Switch pointer from first to second layer wrapper

Question: Callback necessary at all?

1

1

1

1

2

3

1

2

3

1 1

1

1

1

2

3

33



Change beam process 3
Structure:
• Only one supercycle, nodes contain indices of BPCs / sequences to be 

executed
• One static wrapper per BPC / sequence
• One set of beam processes per BPC / sequence, one BP per timing group
• Several wrappers may be called from one supercycle node simultaneously
• Set of BPs (=BPC) called by one pointer via one wrapper

Change beam process:
• Provide new set of beam processes 
• Switch one pointer from wrapper to new set

PG guard, switch one BPC / sequence to “No Beam” or “No Execution”
• Provide alternative set of beam processes 
• Switch one pointer from wrapper to alternative set on demand
• … or use tagging when possible

Question: Callback necessary at all?

2

3

1

BPC = set of
[Beam Process]

BPC 
wrappers

[BPC index]

Supercycle
[BPC index]

1113

1113

1, 3

1

2

2

1, 3

2, 3

3

1112

11
11

1 / 3 / 1 / - / 1

- / 2 / 2 / 2 / 5

- / 2 / 2 / 2 / -

- / 2 / 2 / 2 / -

4 / 2 / 2 / 2 / 5

1 / 3 / 1 / - / 1

1 / - / 1 / - / 1

Schedule
(Beam processes
per timing groups;
just for information,
not part of structure)

Event messages 
per timing group

34


