
Generating a FESA-3 PLC class

based on your SILECS configuration

User Manual

(July 2015, SILECS team – BE/CO-FE)

Table of Contents

FESA Eclipse plugin: Importing your design document ... 2

FESA Eclipse plugin: Importing your C++ generated code .. 3

What to know about the generated FESA design document .. 4

What you need to do to finalise the FESA design .. 4

What to know about the FESA deploy document .. 5

What you need to do for the deploy document ... 5

What to know about the FESA device-instances document .. 5

What you need to do for the FESA device-instances document .. 5

USER code implementation ... 6

FESA Eclipse plugin: Importing your design document

Considering our Tutorial SILECS Design, SilecsValid/2.0.0,

in the SILECS workspace you will find the following files:

To import the FESA class start Eclipse and go to the menu

File>>New>>Other… , look for FESA and select New FESA

Class.

In the next window, add a name for the class. You must use the same name of your SILECS class (case sensitive).

Click Next and select the FESA version for the class. Always select the latest FESA release of the major version you

selected in SILECS (for example, if in SILECS tool you chose to generate for FESA Release 0, then in this window you

should select 0.10.1).

Click Next to display the window from which you will be able to import your generated class. Select the radio

button Custom and a new window will appear allowing you to select the generated XML class design to import.

Just go to the location where you chose to retrieve the generated sources and select the design XML file of the

class you wish to import in FESA: <myclass>.design.xml

When entering the name for the

FESA class, use the SAME name of

your SILECS class otherwise the

compilation will fail!

In the next window choose whether you want to commit automatically your class to the FESA SVN and click Finish.

You should now have your FESA class showing in the list of projects on the left panel of Eclipse. You just need to

modify the Ownership node of your class design, adding your group in the responsible node (i.e. BE/RF, TE/ABT).

FESA Eclipse plugin: Importing your C++ generated code

SILECS tool also generates other files, to give you an easier way to interface PLCs and FESA. These files are

contained in the sources folder of the class and consist of a C++ wrapper to provide access to the FESA fields, the

SILECS registers and the PLC controller, and two makefiles, one for FESA design and the other for deploy units. To

use them just follow these instructions:

1. Open the FESA Perspective from the Eclipse menu, Window>>Open Perspective>>Other…>>FESA

2. Open the FESA class design (contained in the FESA project in the src folder)

3. On the menu on the top of the editor click Generate Source Code

4. From the project folder on the left panel of Eclipse go to the Common folder, right click on it and select

Import…. Look for General>>File System, double-click it, go to the location where you chose to retrieve the

generated sources and select the .cpp and .h files contained in the sources folder

5. Import the Makefile.specific.design file into the root of the FESA class and rename it as Makefile.specific.

6. If you are developing a PXI-based control system, open the so-renamed Makefile.specific and enable the

WITH_CNV variable (be careful to not insert useless blank after the ‘YES’).

7. To build the sources, go to the right panel of Eclipse. There you should see the Make Target view. If not, just

go to Window>>Show View>>Make Target to make it visible. The view will show a list of build tasks for

your FESA class. Double click on the one you need and wait for the build to be completed.

What to know about the generated FESA design document

The design document is fully generated and does not require additional editing. It consists of:

 One FESA class per SILECS class configuration

 Generated C++ code relies on the SILECS class name. It's possible to use a different name for the FESA class

itself but in this case, #include paths lines and namespace must be changed in the <.cpp/.h> generated files

every time the FESA class is (re-)generated (not recommended)

 One FESA field is provided for each SILECS register

 One setting-property is provided for each WRITE-ONLY SILECS block (with custom set-action and default get-

action)

 One setting-property is provided for each READ-WRITE SILECS block (with custom set-action and custom get-

action)

 One acquisition-property is provided for each READ-ONLY SILECS block (with custom get-action only)

 One rt-action, logical-event timer and scheduling-unit for each READ-ONLY SILECS block acquisition (polling

mode)

 One server-action for each WRITE-ONLY and READ-WRITE SILECS block setting (on-demand mode)

 One server-action for each READ-WRITE SILECS block acquisition (on-demand mode)

 Naming convention for the FESA objects:

property (setting/acquisition) <SILECS Block-name>Property

field (setting/acquisition): <SILECS Register-name>

default get-server-action Get<SILECS Block-name>

custom server-action Send/Recv<SILECS Block-name>

custom rt-action Recv<SILECS Block-name>

scheduling-unit Recv<SILECS Block-name>Unit

timer logical-event Recv<SILECS Block-name>Event

What you need to do to finalise the FESA design

 Generate the source code and save the design document

 Implement the SILECS communication (see details in section ‘USER code implementation’ of this document)

 Compile and generate the FESA class objects

What to know about the FESA deploy document

Now you need to deploy your new PLC class and instantiate the related FESA devices in your deploy-unit. You can

use an existing deploy-unit or create a new one if needed.

What you need to do for the FESA deploy document

 Add a class node for each PLC class you want to schedule in the same Server (in a separate concurrency-layer if

required)

 Add a scheduler node if missing and edit the name of the concurrency-layer (e.g.: 'mainLayer')

 Add a scheduling-unit node for each acquisition unit of your class (drop-down list or automatic with recent

FESA version)

 Import the Makefile.specific.deploy file into the root of the FESA deploy unit and rename it as

Makefile.specific

 If you are developing a PXI-based control system, open the so-renamed Makefile.specific and enable the

WITH_CNV variable (be careful to not insert useless blank after the ‘YES’).

 Generate the source code and save the deploy-unit document

 Compile and generate the FESA executable

What to know about the FESA device-instances document

Number of devices, global and instances parameters depends on each application. The definition of the FESA

instances relies also on the SILECS configuration. Thus complete the document by respecting the following

conventions:

 One FESA instance per SILECS device (as defined in the SILECS mapping document)

 SILECS devices of the same equipment class can be deployed on (controlled from) different PLCs

 FESA/SILECS device one-to-one relationship is done thanks to predefined fields:

 A global-instance configuration field to store the name/version of the SILECS equipment class.

 A device-instance configuration field to store the related SILECS device name (label) and the hostname of its controller

(PLC, PXI, etc.)

What you need to do for the FESA device-instances document

 Create a new instance document for the current deploy-unit

 Edit the name of the global-instance (e.g.: <SILECS class-name>-global)

 Edit the global plcClassName field (name of the SILECS class)

 Edit the global plcClassVersion field (version of the SILECS class)

 Add a new event-configuration for each Recv event node of the events-mapping (recommended naming:

Recv<SILECS Block-name>Config)

 Adjust the timer period of this event

 Add one device-instance per SILECS device, then:

 edit its FESA name

 in the configuration node adjust the plcHostname and the plcDeviceLabel of the related SILECS device

 in the events-mapping node select the appropriate event-configuration-ref you have just added before

For massive edition it's recommended to duplicate and edit device-instances from the text document directly

(Source tab)

USER code implementation

C++ generated code provide a high-level wrapper on top of the SILECS C++ library to free the user from

implementing iterative and systematic actions. To implement the PLC communication he simply has to call atomic

methods in the appropriate real time and server actions. In the following example FESA class and SILECS class name

is SilecsValid (version number of the SILECS class is 2.0.0):

Open the RealTime/RTDeviceClass.cpp file (and/or the Server/ServerDeviceClass.cpp – see “Where to use the

setup() method” section of this document) and insert include reference of the generated <.h> file:

#include <SilecsValid/Common/SilecsValid_v2.0.0.h>

 In the specificInit() method initiate the SILECS communication by calling the setup() method:

void RTDeviceClass::specificInit()

{

 SilecsValid::setup(SilecsValidServiceLocator_);

}

 For each generated rt-action file, insert include reference to the generated <.h> file:

#include <SilecsValid/Common/SilecsValid_v2.0.0.h>

...

void RecvArrayAQN::execute(fesa::RTEvent* pEvt)

{

 // get the multiplexing context

 MultiplexingContext* pContext = pEvt->getMultiplexingContext();

 and call the appropriate PLC communication method to update the FESA fields with the related PLC registers:

 // to get all the devices of the complete cluster (all PLCs which are connected from the setup)

 SilecsValid::ArrayAQN.getAllDevices(SilecsValidServiceLocator_, true, pContext);

 // to get a specific collection of devices based on the selection-criterion

 SilecsValid::ArrayAQN.getSomeDevices(deviceCol_, true, pContext);

 // to get all the devices of one particular PLC

 Silecs::PLC* pPLC = …

 SilecsValid::ArrayAQN.getPLCDevices(pPLC, SilecsValidServiceLocator_, true, pContext);

 // to get one particular device

 Device* pDevice = …

 SilecsValid::ArrayAQN.getOneDevice(pDevice, true, pContext);

There is one communication object per SILECS block definition. They must be used in the appropriate action (read

strings).

In this example, getAllDevices method is responsible to acquire the ArrayAQN blocks from the hardware

(transmitNow = true) and to update all the FESA fields with the corresponding SILECS registers. Using false with

transmitNow parameter would disable the hardware access and simply update the FESA fields with current registers

values (not usual in common application).

 For each generated ‘Recv’ server-action file, insert include reference to the generated <.h> file and call the

appropriate PLC communication method to update the FESA fields with the related PLC registers, e.g.:

#include <SilecsValid/Common/SilecsValid_v2.0.0.h>

...

void RecvScalarCFG::execute(fesa::RequestEvent* pEvt, Device* pDev, ScalarCFGProperty_DataType&

data)

{

 // get the multiplexing context

 MultiplexingContext* pContext = pEvt->getMultiplexingContext();

 // on-demand get to the related PLC device

 SilecsValid::ScalarCFG.getOneDevice(pDevice, true, pContext);

 ...

}

In this example, getOneDevice method is responsible to acquire the ScalarCFG block from the hardware

(transmitNow = true) and to update all the FESA fields of that particular device with the corresponding SILECS

registers.

 For each generated 'Send' server-action file, insert include reference to the generated <.h> file:

#include <SilecsValid/Common/SilecsValid_v2.0.0.h>

...

void SendScalarCFG::execute(fesa::RequestEvent* pEvt, Device* pDev, ScalarCFGProperty_DataType&

data)

{

 // get the multiplexing context

 MultiplexingContext* pContext = pEvt->getMultiplexingContext();

 and call the appropriate PLC communication method to update the SILECS registers with the related FESA

fields:

 // set registers of all devices of the complete cluster (all connected PLCs)
 SilecsValid::ScalarCFG.setAllDevices(SilecsValidServiceLocator_, true, pContext);

 // set registers of a specific collection of devices based on the selection-criterion

 SilecsValid::ScalarCFG.setSomeDevices(deviceCol, true, pContext);

 // set registers of all the devices of one particular PLC

 Silecs::PLC* pPLC = …

 SilecsValid::ScalarCFG.setPLCDevices(pPLC, SilecsValidServiceLocator, true, pContext);

 // set registers of the related PLC device

 Device* pDevice = …

 SilecsValid::ScalarCFG.setOneDevice(pDevice, data, true, pContext);

}

setAllDevices, setSomeDevices and setPLCDevices methods can used to update all the SILECS registers of a

device collection from the corresponding FESA fields and send the block (ScalarCFG in that example) to the

hardware (transmitNow = true). Just update the SILECS registers without sending the block if ‘transmitNow’ is false.

setOneDevice method provides an additional API to update the SILECS registers from the RDA data object. This

particular API method must be used to send data on-demand from the server-action.

Where to use the setup() method

Depending on the executable you want to use, you need to call the setup() in the right specificInit(). The following

table shows where to call it from, depending on the synchronisation mode of the SILECS registers and on the type

of FESA executable you want to use.

SILECS

register

synchro

FESA-3 executable

Mixed Server RT Server + RT

Read-Write RT or Server Server RT Server + RT

Read-only RT or Server Server RT Server + RT

Write-only RT or Server Server RT Server + RT

Exception handling

The generated code contains the code necessary for setting up the SILECS service using the setup() method. In case

of connection problems with the controller or in the synchronisation between the SILECS registers and the FESA

fields, the method throws an exception.

Handling exceptions in the custom code (real time and server actions) is left to the user. For example, in a real time

action the user could use the following code:

 void RecvArrayAQN::execute(fesa::RTEvent* pEvt)

 {

// get the multiplexing context

MultiplexingContext* pContext = pEvt->getMultiplexingContext();

for (std::vector<Device*>::iterator itr = deviceCol_.begin(); itr != deviceCol_.end(); ++itr)

{

 Device* pDev = (*itr);

 try

{

 SilecsValid::ArrayAQN.getOneDevice(pDev, true, pContext);

 }

 catch(const Silecs::Exception& ex)

 {

 throw fesa::FesaException(__FILE__, __LINE__, ex.getMessage());

 }

}

}

For further information, please contact: silecs-support@cern.ch

or have a look to the SILECS wikis: https://wikis.cern.ch/display/SIL/SILECs+Home

mailto:ieplc-support@cern.ch
https://wikis.cern.ch/display/SIL/SILECs+Home

