Customized SILECS Deploy-unit C++ wrapper

Introduction

For each Silecs Deploy-Unit it is possible to generate C++ objects which will allow the user to access his data in an object oriented manner.

Why should | to use the wrapper?

The big advantage of this solution with respect to directly using the library are:

1. The names of controllers, devices, blocks and registers are names of objects and methods so if the user mistypes one of this names he
will get an error at compilation time; Using the library this names were handled as string and exceptions were raised at runtime.
2. The set-up of the communication is simplified and can be completely transparent to the user.

Should | always use the wrapper?

The wrapper simplifies the user code. It covers most of the cases uses by the user but the library is always supported and gives more flexibility to
the user.

Wrapper Structure

The wrapper is composed of 2 layers on top of the current C++ library. The first layer is a generic layer which namespace is called SilecsWrapper.
This layer implements the common wrapper function and should be completely transparent to the user. The second layer is customized for the
user Deploy Unit. This layer is composed by:

. A single <DeployUnitName>::DeployUnit class.

. One <DesignName>::Design class, for each design which is deployed by the deploy unit.

. One <DesignName>::Controller class, for each design which is deployed by the deploy unit.

. One <DesignName>::Device class, for each design which is deployed by the deploy unit.

. One <DesignName>::<BlockName> class, for each block present in each design which is deployed by the deploy unit.

b~ wWN PR

As a more concrete example the following class diagram presents the case where there is a deployUnit called Cfp774Simatic400_1 0 0
deploying 2 design called SilecsValid_1_0_0 and SilecsHeader_1_0_0.

class Class Model

deploytiit | =_design #_controller

<+ slemHeader Sile ctp_T74_csimatic. s7_02 |+ dev

—= ——

+ ~DeployUnit)

“silecsvslia
=

2ol 774 csimatic s7_02|+

Device.

‘98, silessiiapper:Cantraller’)

class Block model /J

silecsWrapper:Block

_name :std:string freadOnlyl

+

Blodk(std: :string &)
~Block()

+ getMame() std:stringd [queny}

SilecsValid_1_0_0:RwBlock

SilecsHeader_1_0_0::HdrBlk

_chedsum uint32_t
_date :double
_user :std:string
_wersion std:string

E I A A T S I

get_chedsum{) uint32_t [gueny
get_date{) :double {querny}
get_user) :std::string fquerny}
get_wversion{) :std::string {queny
HdrBk{)

~HdrBIk{}

set_chedsumiuint32_t) void
set_date{double) :void
set_user|std::string&) void
set_version{std: string&) :woid

otk kg

+

b1_rew uint®_t

b2_rw uintd_t

b3_rw uintB_t

b4 _rew uintE_t (b4 _rwDim1])

b4 rewDimi1 stdisize =3 {readOnlyl
b5 _rw uintB_t ([b5_rwDim1])

b5 rewDimi1 std:size =3 {readCnlyl
b8 rw uintB_t

ol _rew int8_t
c2_rew intd_t
c3_rw intd_t

dil_re int32_t
dwl_rw wint32_t

dw2_rw uint32_t [dw2_reDim1)[dw2_reDim2])

dw2_rwlim1 :std:size_t =1 {readOnly}
dw2_rwlim2 :std:size_t = 3 {readOnly}
i1_rw cint18_t {[i1_reDim1])

i1l _rwDim1 :std:size_t =2 freadOnlyl
i2_rw cint18_t [[i2_reDimANi2_reDim2])
i2_rwlim1 :std:size t =2 readOnlyl
i2 rwDim2 :std:size t =5 freadOnlyl
ri_rw :float {r1_r«Dim1])

rl_r«wDim1 :std:size t =3 freadOnlyl
r2_rw :float {r2_rawDimd)[r2_ra«Dim2])
r2_r&wDim1 :std:size t =1 fread0Onlyl
2 rwlDim2 :std:size t = 2 freadOnlyl
s1_rw :std:sting

s2_rw std:string {[s2_rwDim1])
s2_rwDim1 cstd:size t =3 freadOnlyl
s3_rw std:sting

s4_rw std:string

wl_re uint18_t

F I T S T S O S S e S S R S A S R T S CH S S SR S SR S S R S 3

getB1_mrw) uintd_t

getB2_rw() uintd_t [guerny
getB3 rw) uintB_t [queny}
getB4_rw{uintd_t*) void [guenyd
getB5 rw{uintd_t*) veid [guery
getB8) uint8_t [queny
getC1_mw() @intd_t {guery}
getC2_rwl) :intB_t {gueny}
getC3_mw) [int3_t {guerny}
getDi1_mw() :int32_t [query}
getDwl_rw() uint32_t {querny}
getDwZ_rwfuint32_t*) wvoid {guery}
getl1_rw{int18_t*) veoid [guery}
getl2_rw{int18_t*) veoid [guery}
getR1_mw{float®) void {guery}
getR2_rw(float®) veoid {quernyd
get5S1_mw) std:string& {guerny}
get52 rw(std:string®) void {guery}
get53 rw) std:string& {guerny}
get54 rw) std:string& {guerny}
getWi1_rw() uint18_t {gueny}
RwBlodk()

~RwBlodk()

setB1 _rw{uint8_t) void
setB2_rw{uintd_t) void

setB3 rw{uintB_t) :void

setB4 rw{uint@_t*) void [guernyl
setB5 rw{uintE_t*) void [guerny
setBE rw{uintB_t) void
setC1_rw(intB_t) void
setC2_rw(intB_t) void
setC3_rw{intB_t) void
setDil_mw(int32_t) void
setDwl_rwiuint32_t) void
setDw2 rafuint22 %) :veid lgueny}

setl1_rw{int18_t*) :void {guery}
setl2_rw{int18_t*) :void {guery}
setR1_rw{float®) :void {guery}
setR2_rw{float®) :void {guery}
set51_rw{std: :string&) :void
set52_ rw(std:string™®) :void
set53 rw(std:string&) void
set54 rw(std:string&) :void
setW1_rw{uint18_t) veoid

I T R

How To Use The Wrapper

Introduction

The sample code below is based on the following SILECS configuration (in blue the ones we use):

® Deploy-Unit (DU) name/version : Cfp774Simatic400/ 1.0.0
® Design class name/version : Silecsvalid / 1.0.0
® Design class blocks . rwBlock, readBlock, writeBlock
® rwBlock registers : bl_rw, b2_rw, wl_rw, ...
® Controller host-name : cfp-774-csimatic-s7-02 (-"is replaced by '_' in generated C++ code)
® SilecsValid instances (devices) : 0,1, 2 (we do not use explicite labels in this example)

Include the SILECS service in your Makefile

In your application Makefile (or FESA Make.specific for instance), it's enough to add the following include (refering to the current MAJOR release
1):

SI LECS_VERSI ON?=1. m p
include /acc/local /$(CPU)/silecs/$(SILECS VERSI ON)/ i brary/ MakeSI LECS. i ncl ude

Include the DU resources in your C++ code

/'l I'nclude each DU W apper header file. '...' should refer to the appropriate root
folder in case of FESA inplenentation
#include <.../Comron/ Cf p774Si mati c400_1_0_0. h>

N.B: in this example, the generated Wrapper header file (Cfp774Simatic400_1_0_0.h) has been copied in the Common folder of the FESA class
repository (...)

Basic Setup:

The default way to construct a DeployUnit and automatically establish the connection with all the controllers deployed by the DU:

/1 Construct deploy unit with default configuration (adding ' COMM as di agnostic
topi c)

Cf p774Si mati c400_1 0_0:: DeployUnit* du =

Cfp774Si mati c400_1 0_0:: Depl oyUni t:: getlnstance("ERROR COMM') ;

N.B: logTopics ("ERROR, ...) are global parameters of the Silecs library. If your client application uses multiple wrappers with different log topics
the ones applied to the latest constructed object will overwrite all others.
Possible diagnostic topics are described from this page: Client software implementation

Receiving a block

A block is a data structure which is specific to a certain design and represent the minimal amount of information that can be sent/received to/from
a particular device. You can construct a block as follow:

/1l Declare custom rwBl ock
SilecsValid 1 0 0::RwBl ock rwBl ock;

In order to retrieve the block “rwBlock” from instance "0”, the following code can be used:

/'l receive rwBlock of SilecsValid for cfp_774_csimatic_s7_02/ device "0"

du->get Sil ecsVal i d()->getCfp_774_csimatic_s7_02()->get Devi ce("0")->recei veRwBl ock() ;
/1 get the bl ock

du->get Sil ecsVal i d()->getCfp_774_csimatic_s7_02()->get Devi ce("0")->get RaBl ock(rwBl ock)
/1 get bl rwregister value fromthe bl ock

uint8_t bl = rwBl ock.getBl_rw();

If you want to receive the data blocks for all devices of cfp_774_csimatic_s7_02 at the same time you can use:

/'l receive rwBlock of SilecsValid for all devices of cfp_774_csimatic_s7_02
du->get SilecsValid()->getCfp_774_csimatic_s7_02()->recei veRaBl ockAl | Devi ces();

If you want to receive the data blocks for all devices of all the controllers of the DU at the same time you can use:

/'l receive rwBlock for all devices of all controllers
du->get Sil ecsVal i d()->recei veRwBl ockAl | Control lers();

Sending a block

In order to send a block to a specific device the following code can be used:

/'l set Bl_rw register value

rwBl ock. set B1_rw(5);

/'l send rwBl ock of SilecsValid for cfp_774_csimatic_s7_02/ device "0O"

du->get SilecsValid()->getCfp_774_csimatic_s7_02()->getDevice("0")->sendRwBl ock(rwBl ock
)

To be noticed that once a block is created all register are initialized to 0 and the strings are initialized as empty string. Since it is not possible to
send a single register all the value of the block shall be initialized by the user before sending.

https://wikis.cern.ch/display/SIL/Client+software+implementation

As for receiving sending can also be triggered at controllers and design level. Remember that all block shall be set first!

Accessing a specific device

If the device were defined by label also a method get<DeviceLabel>() will be generated at the within the controller class. If the user has defined a
number of devices then the devices can be access directly throught the map or via the method getDevice("label"); In this case the default
generated label are 0,1,2...

Delete SILECS resources

One method call is enough to close all connection and delete resources properly:

/! Rel ease SILECS resources
du- >del et el nst ance();

Optional settings:

If the user needs to specify different connection flags to different controllers or he does not want that by default all controllers are connected this
can be done as follow:

/1 Create configuration structure

si | ecsW apper : : Depl oyConfi guration config;

confi g. set Aut omati cConnect (fal se); //do not connect all controllers
by defaul t

/1 Construct deploy unit with custom configuration

Cfp774Si mati c400_1 0_0:: DeployUnit* du = new

Cf p774Si mati c400_1_0_0: : Depl oyUni t ("ERROR", confi g);

/1l Set controller connection flags

du->get SilecsValid()->getCfp_774_csimatic_s7_02()->set Connecti onFl ag(fal se);
/1 Manual Iy connect one particular controller

du->get Sil ecsValid()->getCfp_774_csimatic_s7_02()->connect();

	Customized SILECS Deploy-unit C++ wrapper

