

Fesa Equipment Links

1 Introduction... 2
2 Friend equipment link ... 2

2.1 Use cases... 2
2.2 Design ... 3
2.3 Deployment... 5
2.4 Development ... 6

2.4.1 Directories hierarchy... 6
2.4.2 Source development.. 7

2.5 How to build a SharedServer .. 9
2.5.1 Create a FesaSharedServer.cpp file .. 9
2.5.2 Update the Make.specific.. 10

3 RDA Equipment Link ... 12
3.1 Use cases... 12
3.2 Design ... 12
3.3 Deployment... 12
3.4 Development ... 13

3.4.1 Directories hierarchy... 13
3.4.2 Source development.. 13

4 Interface equipment link ... 15
4.1 Use case .. 15
4.2 Design ... 15
4.3 Deployment... 15
4.4 Development ... 16

4.4.1 Directories hierarchy... 16
4.4.2 Source development.. 16

1 Introduction
In FESA environment most classes are developed as standalone classes. But
sometimes it is necessary to define some relationships between Fesa Classes.
Those relationships are called Equipment-links.
Currently we can define three different types of Equipment Links:

• Friend relationship
• RDA relationship
• Interface relationship

2 Friend equipment link
The “Friend” keyword indicates that using this kind of relationship a Fesa
class can give direct access to its private Data Model to the Friend Fesa class.
In fact it’s the same concept as the one defined by the C++ language.

2.1 Use cases
Friend Equipment-links allow different assemblies of equipment-classes, but
let us restrict to the use-case that we want to promote.
We have identified two typical use-cases where this kind of relationship can
be used:

• Multiple Interfaces: sometimes, equipments are so complex that
they will generate very complex interfaces if we try to implement them
into a single Fesa Class. In this case it comes very natural to break
this complexity into well defined sub-functionalities which can be easily
implemented into different Fesa classes. By doing this you open the
possibility to have clients looking to this complex equipment through
different specialized views.

• Mediator: some Fesa classes can have a lot-of devices instances
(100, 200,..) deployed per FEC. In this case we can imagine client like
for example “supervisor system” which want to talk with a “manager”
deployed as a single instance on each FEC, instead of talking directly
with all instances, to execute actions common to all the devices or at
least common to a family of devices

2.2 Design
The core control class (Sensor or PulsedMagnet in the above figures) usually
orchestrates real-time activity on behalf of the whole set of tightly-coupled
classes: the central control accesses the hardware, processes raw-data and
posts processed-data into the surrounding class's devices.
Therefore the core control class design should contains the complete
description in terms of interface, data, actions, events, scheduling and
equipment-links where you have to specified all the friends links.
In other hand all the surrounding classes should have a restraint design
which contains only the interface data and actions containing only server-
actions.
The following pictures shows clearly typical design for the core Control class
and for one of the surrounding class in this case FunctionGeneratorIntf

Control class design:

Friend Interfaces
declaration

RealTime Action
definition

Scheduling
definition

FunctionGeneratorIntf class design

No events (empty node) and
no scheduling node

Only
ServerAction

Publish the fact that this Fesa
class is not a stand-alone class but
is an interface of PulsedMagnet
Fesa class

2.3 Deployment
For this kind of Friend Link we recommend strongly the following deployment

Since the thread priority are not correctly managed in the release 2.8, we
have to deploy the control class in mode split to be able to set the priority
level of the RT part of the control class (in our example PulsedMagnet). But
as soon as this point will be fixed, everything could be deployed in a single
process and for this, the deploy mode of the PulsedMagnet should be

2.4 Development

2.4.1 Directories hierarchy
Create a local directory structure into which you will extract all four classes
from the CVS repository:
cd PulsedMagnetProject
Fesa Setup PulsedMagnet 0<scratch/edit>
Fesa Setup FunctionGeneratorIntf 3 <scratch/edit>
Fesa Setup TimingIntf 1 <scratch/edit>
Fesa Setup PowerConverterIntf 0 <scratch/edit>

After those steps, you should have such directory hierarchy:

Then development activities can start on each class and you can proceed as
usual.
The only difference is that, at a certain time in the development phase, you
will need to see the DataModel of each interface from the control class which
is in this case PulsedMagnet. For this point, you have to do in each
surrounding classes:
cd FunctionGeneratorIntf/v3
make CPU=ppc4 localDeliver
cd PowerConverterIntf/v3
make CPU=ppc4 localDeliver
cd TimingIntf/v3
make CPU=ppc4 localDeliver

Nb: as usual CPU=ppc4 is not necessary because it’s the default platform if
nothing is specified
Nb: this step must be executed only once and not each time you evolve your
class because LOCA_DELIVER contains a series of links and not a copy of the
files.
After this step you will see that in each surrounding classes a new directory
[CPU]/LOCAL_DELIVER which contains all the symbolic links required by the
Friend link.
FunctionGeneratorIntf directory hierarchy is shown below:

Created by make localDeliver

From now surrounding classes are ready to be visible from the control class.
Then you have to establish some links to be able to see them:

cd PulsedMagnet/v3
ln –s ../../FunctionGeneratorIntf/v2/ppc4/LOCAL_DELIVER FunctionGenerator
ln –s ../../PowerConverterIntf/v1/ppc4/LOCAL_DELIVER PowerConverterIntf
ln –s ../../TimingIntf/v0/ppc4/LOCAL_DELIVER TimingIntf

The result is the following in the PulsedMagnet directory

Symbolic links pointing to
surrounding classes locally delivered

2.4.2 Source development
We have seen that the control class has defined some dedicated RTActions to
process and store the data for the surrounding classes. So this means that
from RTActions of the control class we need to access the different
deviceCollection of the surrounding classes. The below picture show some
code extraction of the PowerConverterRTAction which is in charge to process
and store the data into the deviceCollection of the PowerConverterIntf Fesa
class
PowerConverterRTAction.h:

This RTAction is a PulsedMagnet’s one,
from which we want to see the
PowerConverterIntf ‘s deviceCollection

PowerConverterRTAction.cpp:

Iteration on the PowerConverter
deviceCollection

PowerConverter deviceCollection reference
initialization

NotifyAction.cpp : we encourage in the design to define a specific RTAction
“Notify”, scheduled as any other RTAction which groups all notification
messages. In our case notification message for PulsedMagnet can be
automatic but we have manually to notify all the surrounding-classes.

Prepare notification string for
PowerConverterIntf Fesa class

Notify PowerConverterIntf Fesa
class

2.5 How to build a SharedServer and a
separate RT process

Build those processes under TEST directory, can’t be handled automatically and
therefore requires some manual operations. You have to create two sources files:

• FesaSharedServer.cpp: which contains the declaration of all the Fesa classes
deployed into the shared server

• RT4SS.cpp: means RealTime part for SharedServer, which contains the
declaration of the real time part of the Fesa class

2.5.1 Create FesaSharedServer.cpp source file
You can find here the FesaSharedServer.cpp corresponding to our use case:

 Instantiate each Class Interface running into the SharedServer

by specifying:
- “TimingIntf” : Fesa class name
- “.” : path to retrieve instantiation document
- “SPLIT_AND_SHARED_SERVER” : deployment type

Specify the process
type: in this case it’s a
SharedServer

2.5.2 Create RT4SS.cpp
You can find here the RT4SS.cpp corresponding to our use case:

Deployment type must be :
SPLIT_AND_SHARED_SERVER

2.5.3 Update the Make.specific
In order to build a SharedServer and the Realtime processes, you have to
add a new target in the Makefile. Since all the Makefiles are re-generated
each time a Fesa Synchronize is executed, this new target must be included
into the Make.specific. This target is called “shared”.
So, to build the binaries execute :
> make CPU=x86 shared

The modifications consist to :

• Add all the necessaries include paths
• Add all the necessaries lib path
• Add the new target “shared” and the rules to build the expected

binaries

You can find, below, the Make.specific corresponding to our use-case

2.5.4 Remarks
Testing deployment in mode split implies that all deviceModel of the involved Fesa
classes are instantiated into Shared Memories. So during development and test phase, you
will have several iterations, involving sometimes modification of the design or of the
device instantiation document. In those cases, before you re-launch the new binaries, you
have to delete the existing equipment’s Shared Memory. For this you can either reboot
your FEC or remove manually the equipment’s Shared Memory by :

• LynxOS: using lipcs and lipcrm utility programs.
• Linux: removing the corresponding files located under /dev/shm

3 RDA Equipment Link
Some complex equipment of the accelerator, like Radio Frequency
equipment, needs to be distributed on several computers (Front-End, PLC
etc…). Application level would like to talk to a kind of “Virtual Equipment”
which hides the complexity of the implementation.
So in this case we need to describe a distributed scheduler over several
computers. For the time being Fesa doesn’t bring any specific support for this
kind of complex equipment, but just recommend the usage of the CMW
communication layer (called RDA) and in particular the subscription
functionality and gives some advises to show how to integrate into a Fesa
class such Equipment Link.

3.1 Use cases
Let’s say a complex system deployed on three FECs. This system is described
by three Fesa classes. Two of them are completely independent and in our
example we call them Class1 and Class2, and the third one acts as the Main
class and provide the virtual view of the complex equipment

3.2 Design
In this case all the classes are developed independently and you have not to
registered in the node “equipment-link” any particular information

3.3 Deployment
From the Deployment Fesa Tool each class are deployed independently on
separate Front-Ends, and the deployment diagram of our example is depicted
in the following figure

3.4 Development

3.4.1 Directories hierarchy
Each class are developed independently and since there is no library call from
one class to an other there is nothing particular to set for the source
development. Simply execute standard Fesa setup:
Fesa Setup Class1 0<scratch/edit>
Fesa Setup Class2 3 <scratch/edit>
Fesa Setup MainClass 1 <scratch/edit>

3.4.2 Source development
For Class1 and Class2 there is no particular recommendation.
In other hand, for the MainClass, we want to recommend a way to implement
this RDA Link to avoid RDA connection spread everywhere in the source.
From the point of view of the MainClass, one of the EventSource which trigs
the activity is the listening of the subscriptions. So we recommand to define
a customEventSource which should contain all the mechanisms involved in
subscription process:

- create replies Handlers
- start/stop subscription
- process the subscription replies, build a dedicated event payload, and

fire an event to trig the appropriate RTAction

An example can be found in the Fesa class CVS repository: TestEqpLinksRDA
version 0. From the package RT you can find an example of such
customEventSource which is called ReplyHandler.cpp .
The following figure show just the header file of this customEventSource
highlighting some important points.

http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/TestEqpLinksRDA/v0/RT/ReplyHandler.cpp?rev=1.3&cvsroot=FESA-equipment&content-type=text/vnd.viewcvs-markup

Inner class which
implements the
ReplyHandler Interface

Mandatory because RDA
relies on JTC thread and
FESA Fwk use posix Thread

The customEventSource thread is
suspended till the conditionvariable is
notified by the subscription listener

4 Interface equipment link
This relationship is used to talk with a Fesa class resident in the same Front-
End. The main difference compare to the “RDA Link” is :

- It is restricted to the scope of the Front-End
- No communication is involved, it’s a function call

As for the “RDA Link”, there is, for the time being, no type checking at the
compilation time.

4.1 Use case
A typical case is a Fesa class, for instance BPMLE which wants to control a
Timing device through the LTIM Fesa class.

4.2 Design
Such equipment link requires information in the design

4.3 Deployment
The deployment diagram for our use case is the following: as you can see the
LTIMInterface library is duplicated into BPMLEI process

4.4 Development

4.4.1 Directories hierarchy
Since you use the interface of a deployed class, you have not to setup any
particular directories hierarchy. The only think that you have to do, if you
want to run the binary created in your TEST source directory is:
Let’s say that you want to test your fresh executable on the Front-end where
your timing instance is deployed for instance, “dleiripu”. So we recommend
to structure your TEST directory in a such way:

Create a directory with the name of the targeted FEC
Then instantiate the DeviceData for BPMLE
Then create two symbolic links pointing on:

the binary
the LTIM deviceData document used by dleiripu

4.4.2 Source development
The picture illustrates the typical code that you have to produce to call a
property on your favourite class:

	1 Introduction
	2 Friend equipment link
	2.1 Use cases
	2.2 Design
	2.3 Deployment
	2.4 Development
	2.4.1 Directories hierarchy
	2.4.2 Source development

	2.5 How to build a SharedServer and a separate RT process
	2.5.1 Create FesaSharedServer.cpp source file
	2.5.2 Create RT4SS.cpp
	2.5.3 Update the Make.specific
	2.5.4 Remarks

	3 RDA Equipment Link
	3.1 Use cases
	3.2 Design
	3.3 Deployment
	3.4 Development
	3.4.1 Directories hierarchy
	3.4.2 Source development

	4 Interface equipment link
	4.1 Use case
	4.2 Design
	4.3 Deployment
	4.4 Development
	4.4.1 Directories hierarchy
	4.4.2 Source development

