1
2

Fesa Equipment Links

L1l [FTox £ To] o ST PRPRTPPN 2
Friend eqQUIPMENT HINK ..o 2
2.1 U SE CBSES ..ttt ekt e ettt ettt ekttt e bt e et e b et e b e e et b e e r e e ne e nnn e e neennne s 2
2.2 DBSION ottt bt 3
2.3 DEPIOYMENL ... 5
2.4 DEVEIOPIMENT ..ottt 6
24.1 Directories NerarChy ..o 6
24.2 Source deVelOPMENL.........ccviiiiiie e 7
2.5 How to build @ SharedSErVer ... e 9
251 Create a FesaSharedServer.cpp file ..., 9
2.5.2 Update the Make.SPeCIfiC........ccoevviieiiiiecc e, 10
RDA EQUIPMENT LINK ..ottt 12
3.1 USE CBSES ..tttk e et ettt ettt ettt et h e et e b e e b e e b e e et e R et e b e nn e n e nnn e n e 12
Bi2 DBSHION ottt bbbt e 12
3.3 DEPIOYMENL. ... e 12
34 DEVEIOPIMENTottt 13
34.1 Directories herarChy.........cccoeiveie i 13
3.4.2 Source deVelOPMENT..........cvoiiiiiee e 13
Interface eqUIPMENT TINKcoviiiic e 15
4.1 USE CASE ..eeeitiee ittt ettt e ettt ettt ettt ettt e ettt e et e et e e e s b e e e nb e e e nb e e bn e e e nn e e e nree s 15
O B 1= XY [| SRS 15
4.3 DEPIOYMENT. ..o 15
N B 1oV 1 o] o] 4T o | SRR 16
441 Directories NErarChy ..ot 16

4.4.2 SoUrce deVelOPMENL..........oiiee e 16

1 Introduction

In FESA environment most classes are developed as standalone classes. But
sometimes it is necessary to define some relationships between Fesa Classes.
Those relationships are called Equipment-links.
Currently we can define three different types of Equipment Links:

¢ Friend relationship

e RDA relationship

e Interface relationship

2 Friend equipment link

The “Friend” keyword indicates that using this kind of relationship a Fesa
class can give direct access to its private Data Model to the Friend Fesa class.
In fact it's the same concept as the one defined by the C++ language.

2.1Use cases

Friend Equipment-links allow different assemblies of equipment-classes, but
let us restrict to the use-case that we want to promote.

We have identified two typical use-cases where this kind of relationship can
be used:

e Multiple Interfaces: sometimes, equipments are so complex that
they will generate very complex interfaces if we try to implement them
into a single Fesa Class. In this case it comes very natural to break
this complexity into well defined sub-functionalities which can be easily
implemented into different Fesa classes. By doing this you open the
possibility to have clients looking to this complex equipment through
different specialized views.

==interface== ==jinterfaces== ==interface==
PowerComverterintf Timingintf FunctionGener atorlntf
+yoid Setting +yoid Setting +yoid Setting
+yoid Statusg +yoid ExpentSetting +yoid ExpentSetting)
+yoid ExperSetting +yoid Acguisitiong +yoid Acguisitiong
+yoid Acquisitiong
My e
=~ —_ ==ftiend=> | -
- | -
-\-\-\-"-\-._ el .
==frignd== e : {_f,f" ==friend==
e -~

—_
"'\-\.__\-\--\-\Lf.ﬂ'r

==gantrol==
PulsedMagnet

+yoid ExpentSetting
+yoid Status
+yoid Alarm(

e Mediator: some Fesa classes can have a lot-of devices instances
(100, 200,..) deployed per FEC. In this case we can imagine client like
for example “supervisor system” which want to talk with a “manager”
deployed as a single instance on each FEC, instead of talking directly
with all instances, to execute actions common to all the devices or at
least common to a family of devices

=2interfacess=
DSCSensorManager

+y0id Reset(SensorFamily typel
+y0id Acguire(SensorFamily typel
+y0id SetThreshold{SensarFamily trpe)

M,

==friend== |

==cantrol==
Sensor

+yoid Acguisitiond
+yoid Statusd
+yoid Setting)

2.2Design

The core control class (Sensor or PulsedMagnet in the above figures) usually
orchestrates real-time activity on behalf of the whole set of tightly-coupled
classes: the central control accesses the hardware, processes raw-data and
posts processed-data into the surrounding class's devices.

Therefore the core control class design should contains the complete
description in terms of interface, data, actions, events, scheduling and
equipment-links where you have to specified all the friends links.

In other hand all the surrounding classes should have a restraint design
which contains only the interface data and actions containing only server-
actions.

The following pictures shows clearly typical design for the core Control class
and for one of the surrounding class in this case FunctionGeneratorIntf

Control class design:

" equipment-maodel
@) ownership
@) equipment-links

PowerZonverterInt 2 from BT task
) use-frierd FunctonJensratorint 2 from BT task
2 uze-friend\Timinglnt 1 from BT task

2 uze-friend

“— Friend Interfaces
declaration
o= O std-services

@ -I-interface
@ M custom-types
@ 1 data

@ [lactions

it Pulsedhagnetlhocton

jion PowerZonverterAodon

A

RealTime Action

ion Functondenerator Acton .
definition

scheduling-units
@ O zelection-criterion

) rt-action-ref Pulsedblagnetfcton
B= O trigoer

Scheduling
definition
@ O scheduling-unitz Functonenerator Loton

@= O scheduling-units PowerZonverter Loton

FunctionGeneratorIntf class design

" equipment-maodel
@) ownership

Publish the fact that this Fesa

¢ [oFaupmentiinks < class is not a stand-alone class but
used-by-friend Pulsedilagnet 2 is an interface of PulsedMagnet
bR L LI Fesa class
@ H custom-types
@ 1 data
fIactions
(2 server-action SetEipertSeting
(D) server-action SetSettng < Only

ServerAction

[} server-action GetStatus
1 events
Lo @ target-timing-domains

No events (empty node) and
no scheduling node

A

2.3Deployment

For this kind of Friend Link we recommend strongly the following deployment

) FEC-fesa-configuration
2 PulsedMagnet PulsedbMagnet 2 shared-server-split automate
(2 FunctonGeneratorintd FunctonSeneratorIntd 1 shared-server-interface automato

(0 TimingInd TimingIlntd 1 shared-server-interface automate

2 PowerZonverterintd Tininglntd 2 shared-server-interface automato

==e¥acutabla==
SharedSerer

==library== ==library==
PulsediMagnetinterface PowerConverterinterface LonLLESSES ==GharadMermory= =
T~ PowerConverterData

==library=> | —— — — — | |
PulsedMaanetRT

: ==library== ==library== T
I Timinginterface FunctionGeneratortinterface :
' |
| - I |
] = |
| T | |
=XACCRSEEF .. #=arcesser |
: . : =XACCRSEEF |
s T W |
==SharedMemary=:= ==SharedMemary=:= ==SharedMemary== |
PulsedmagnetData TimingData FunctionGeneratorData |
|
|
A /h A |
==ACCRSER S
: ==QLregEE> : ==QLregEE> : :
| [==executable== | |
: IPuIsedMagnetRTProcess : :
| ! |
| |

=<access==

Since the thread priority are not correctly managed in the release 2.8, we
have to deploy the control class in mode split to be able to set the priority
level of the RT part of the control class (in our example PulsedMagnet). But
as soon as this point will be fixed, everything could be deployed in a single

process and for this, the deploy mode of the PulsedMagnet should be
) FEC-fesa-configuration

2 Pulsedilagnet Pulsedmagnet 2 automato
) FunctonCeneratorint FunctonJenera shared-server-interface automatc
(0 TimingIntd TimingIntd 1 shared-zserrer-interface automate

2 PowerConverterInd TiningIntd 2 shared-server-interface autormatc

2.4Development

2.4.1 Directories hierarchy

Create a local directory structure into which you will extract all four classes
from the CVS repository:

cd PulsedMagnetProject

Fesa Setup PulsedMagnet O<scratch/edit>

Fesa Setup FunctionGeneratorintf 3 <scratch/edit>

Fesa Setup Timinglntf 1 <scratch/edit>

Fesa Setup PowerConverterIntf O <scratch/edit>

After those steps, you should have such directory hierarchy:

=) PulsedhlagnetProject
) Pulsedhlaghet
] FunctonGenesratorint
) TimingIntf
) PowerConverterIntf

Then development activities can start on each class and you can proceed as
usual.

The only difference is that, at a certain time in the development phase, you
will need to see the DataModel of each interface from the control class which
is in this case PulsedMagnet. For this point, you have to do in each
surrounding classes:

cd FunctionGeneratorintf/v3

make CPU=ppc4 localDeliver

cd PowerConverterintf/v3

make CPU=ppc4 localDeliver

cd TiminglIntf/v3

make CPU=ppc4 localDeliver

Nb: as usual CPU=ppc4 is not necessary because it’s the default platform if
nothing is specified

Nb: this step must be executed only once and not each time you evolve your
class because LOCA_DELIVER contains a series of links and not a copy of the
files.

After this step you will see that in each surrounding classes a new directory
[CPU]/LOCAL_DELIVER which contains all the symbolic links required by the
Friend link.

FunctionGeneratorIntf directory hierarchy is shown below:

=) FunctoonGeneratorlntt
i
= e
) COMMON
i
) GEMER.A
ppod
LoZal DELIVER

reated by make localDeliver

=)
) SERVER
) TEST

From now surrounding classes are ready to be visible from the control class.
Then you have to establish some links to be able to see them:

cd PulsedMagnet/v3

In —s ../../FunctionGeneratoriIntf/v2/ppc4/LOCAL_DELIVER FunctionGenerator
In —s ../../PowerConverterintf/v1/ppc4/LOCAL_DELIVER PowerConverterintf
In —s ../../TimingIntf/vO/ppc4/LOCAL_DELIVER TimingIntf

The result is the following in the PulsedMagnet directory

Symbolic links pointing to
surrounding classes locally delivered

=l) Pulsedilagnet
) s
E I va

FunctonGensratorint = f FunctonZeneramrIindirapped' LOCAL_DELIVER
TimingInt -= . iTimingIntvopped LOCAL_DELIVEER
PowerConverterIntf -= ! /PowerConverterIntfivl pped/LOCAL_DELIVER
[+ [Cvs
| GEMERATED _ZCDE
Iy ComMmMon

FH [RT

|2 SERVER

Iy TEST

2.4.2 Source development

We have seen that the control class has defined some dedicated RTActions to
process and store the data for the surrounding classes. So this means that
from RTActions of the control class we need to access the different
deviceCollection of the surrounding classes. The below picture show some
code extraction of the PowerConverterRTAction which is in charge to process
and store the data into the deviceCollection of the PowerConverterintf Fesa
class

PowerConverterRTAction.h: This RTAction is a PulsedMagnet’s one,

. from which we want to see the
#include «<fesa/Fesa.h> . . .
#include "Pulsedmagnetoevice.h" PowerConverterIntf ‘s deviceCollection

#include "pulsedwagnetclobalstore.h”

Tnclude <PowerConverterIntfbevice. hx
#Finclude <PowerCorverterIintfclobalstore. hx

namespace PUlse

class PowerConverterRTAcCtion: public RTAction <RTEvent, PulsedMmagnetclobalstore, Pulsedwagnetbevice »
public:

woid PowerConverterRTACTION: execute(RTEVENT | %] ;
PowerConverterRTACtion(const string& name, abstractRTaction::RTACtionConfigd rtactcfgl ;

private:

std: ivector<PowerConverterIntf: :PowerConverterIntfhevice¥=% pPowerConverterbevCol;

PowerConverterRTAction.cpp:

PowerconverterRTACTion: (PowerConverterRTACTion(const stringd name, AbstractRTAcCtion::RTACtionConfigd rtactcfg)
RTAction<RTEvent, PowercConverterIntfclobalstore, PowerconverterIntfhevices(name, rtactcfgl{

Ttilialized once_the private reference on the powerConverterIintf devicecollection
pPowerConverterbevCol = PowerConverterIntf::PowerConverterIntfoevice: igetbevicecollection(l;

¥__ PowerConverter deviceCollection reference
initialization

void PowerConverterRTACtion: jexecute(RTEVent * pEvl{

A4 dterate on the Pulsemagnet dewvicecollection
for (unsigned int i=0; 1 < devicecollection.size(); ++1){

PUlsedmagnetDevice * pPMDev = devicecollection[i]; Iteration on the PowerConverter
LSS LIRSS 4 deviceCollection

iterate on the PowerConverter dewvice collection
or (unsigned int j=0; j < pPowerConverterbDevCol-=size(l; ++31
PowerComverterIntf: :PowercConverterIntfbevice ¥ pPChDey = (YpPowerconverterbevColl[i];

NotifyAction.cpp : we encourage in the design to define a specific RTAction
“Notify”, scheduled as any other RTAction which groups all notification
messages. In our case notification message for PulsedMagnet can be
automatic but we have manually to notify all the surrounding-classes.

NDtify::NDtify[cunst string& name, AbstractRTActiDn::RTActiDnCanﬁg& rtactcfg)
RTACTiON<RTEVent, PulsedwagnetGlobalstore, PulsedwagnetDevices(name, rtactcfgl]

A7 Wotificationstring is formatted:

§§ "oropl, prop2, prop3 idevl, dev?, dev3, devd&propl, prop2, propS:devs”
where

S/ separator s used to separate prDEerty 1ist from the device Tist

A4 separator "&" s used to separate packets of properties/devices

S separator "," is used to separate each strings

S ATTEMTION: wou have To respect strictly the format because for the time being

S4At's not protected agaﬁnst white space or 117egal format,

A4 because it has been defined originally for private usage.

A4In Example we assume that the notfification string]
o the class contains three notification strings initialized on
S Init of the notification string for PowercorwverterIntt
powerConverternotifystr = "setting, Status, Acquisition:™;
vector<PowerconverterIntfhevice¥:»¥ pPChevCol =

FowerConverterIntt: :PowerConverterInttbevice: igethevicecCol lection);
for (unsigned dnt j=0; j < pPChevCol-=sizel); j++0 1
Device® phey = (*pPCDevcoll[]];
powerComverter ot ifysStr += phev-sname. get (J;
it £ = pPChevCol-sxsize(d-12

owerConverterMotifystr += ", ";

< the same

iy \
S0 Init the notification string for TimingIntf Prepare notification string for
timingNotifystr = "setting, status,acguisition:"; PowerConverterintf Fesa class

vector<TimingIntfoevice*>¥% pTiminghewiol =
TimingIntf::TimingIntfoevice: :getbevicecallection];
etc. ..

Notify PowerConverterIntf Fesa

Motify:e<ecute{RTEVeENt™ pEvent) |
Y P class

H

mMultiplexingConte =
/ot owercConverterIntf
Tring classstr =
PowerConverterIntf: :PowerConverterIntfbevice: :palobalstore->name. get();
stractEquipmenthT::notify(pltxt, <lassstr, powerconvertermWotifystrl;

S notify TimingInt
classstr = TimingIntf::TimingIntfoevice: :pGlobalstare->name. get (J;
AbstractEquipmenthT:notify(pltxt, <classstr, timingWotifystr);

2.5 How to build a SharedServer and a

separate RT process

Build those processes under TEST directory, can’t be handled automatically and
therefore requires some manual operations. You have to create two sources files:
e FesaSharedServer.cpp: which contains the declaration of all the Fesa classes
deployed into the shared server
e RT4SS.cpp: means RealTime part for SharedServer, which contains the
declaration of the real time part of the Fesa class

2.5.1 Create FesaSharedServer.cpp source file
You can find here the FesaSharedServer.cpp corresponding to our use case:

A4 WABMNING: this code iz automatically synthesized frow information

/¢4 stored in the data-hase about the your equipment-design. You shall

4 never modify the contents of this file as this would break conzistency
4 with the data-base. In case you need to modify the device and fields
4 please go back to the FESA configuration tool and then rebuild your

A4 equipwent-software with "make extract EQUIPMENT VERSICN™.

#include <fesa/Fesa.h>

#include <cow/srv/fesa/cmw.hs>
finclude <fesa/LocalFesalerver.h>

string AbstractEquipmentClass: :fukVersionExes = FWE VERITON MACRO:
AhstractEquipmentClass: i F UipmentClass: iprocessType =

stractEquipmentClass: :SHARED SERVE Specify the process
type: in this case it’s a
mwihstract® theMW = new cmwi() ;
SharedServer

LocalFesalServer® thelocallerwver = new LocalFesaServer () :

f4 instantiate all the EquipmentInterface objects that must be deployed
A4 Feaa class: FunctionGeneratorIntf
#include <FunctionGeneratorIntfInterface.h:>
FunctionGeneratorIntf: :Functions
onGeneratorIntfInterface ("FunctionGeneratorIntt™,
rr rr
- ,

AbztractEquipmentClass: i 3PLIT AND SHARED 3ERVER) :

+ T
rTref e fare

/¢ Fesa class: Fowe
#include <FPowerConverterIntfInterface.h:
FowerConwverterIntf: :Fowe nterface
werConverter IntfInterface ("PowerConverterIntf®,
rr rr

- ,

AopstractEquipmentClass: i 3PLIT AND SHARED JERVER

f4 Fesa class: Timinglnt
finclude <TimingIntfInterface.h>
TimingIntf::TimingIntfInterface
T g IntfInterface ("TimingIntL™,

hhstractEquipmentClass::SPLIT_AND_SHLRED_SERUER];

Instantiate each Class Interface running into the SharedServer

by specifying:
- “TimingIntf” : Fesa class name

.’ . path to retrieve instantiation document
- “SPLIT_AND_SHARED_SERVER” : deployment type

2.5.2 Create RT4SS.cpp
You can find here the RT4SS.cpp corresponding to our use case:

#

ff FESL framework June Z0o04,

Iy

S4 WABRMING: thiz code is automatically synthesized from information

4 stored in the data-hase about the your equipment-design. You shall

ff never wodify the contents of this file a3 this would break consistency
Sf with the data-base. In case wywou need to modify the device and fields
4 please go back to the FE3IAL configuration tool and then rebuild your

4 equipment-software with "make extract EQUIPMENT WERIICON'™.

#include <fesa/Fesa.h>
string MistractEgquipmentClass: ifwkVersionExec = FWE_VERSION MACRO;

AhztractEquipmentClass: iFesaProcessType LbhstractEquipmwentClass: iprocessType =
hbstractEquipmentClass::SEPARATE_RT;

1=

4 Deployvment as a
—FMulsedMagnetRealtime. b
lzedMagnet: :PulsedMagnetET thePulsedMagnetEquipmentRe ("PulsedMagnet™, .57,
bbstractEquipmentClas=s: i SPLIT AWD SHARED SERVER) :

mwlihstract® theMy = 0; ‘_
#include <fesasLocalFesalServer.hr Depknnnenttypernustbe'
LocalFesalerver* thelocalierver = 0; SPL|T_AND_SHARED_S'ERVER

g) e]

2.5.3 Update the Make.specific

In order to build a SharedServer and the Realtime processes, you have to
add a new target in the Makefile. Since all the Makefiles are re-generated
each time a Fesa Synchronize is executed, this new target must be included
into the Make.specific. This target is called “shared”.

So, to build the binaries execute :

> make CPU=x86 shared

The modifications consist to :
¢ Add all the necessaries include paths
e Add all the necessaries lib path
e Add the new target “shared” and the rules to build the expected
binaries

You can find, below, the Make.specific corresponding to our use-case

#
TFE3A framework June 2Z004.
#

specific path for include 1 i ——%
SPECIFIC_CHYFLAGS T—1I../FunctionGeneratorIntf -I../PowerConverterIntf -I../TimingIntf

specific path for your libhs (-L/...)

SPECIFIC_LDFLAGS(f::fzziffﬁﬁff?nGeneratDrIntf -L../PowerConverterInct —L.zijfﬁfﬁgffff:>

Extra Libs which are shared by the Server and the Bealtime processe

SPECIFIC LDLIESCOMM —IFunctionGeneratorIntfGeneracedPart —-lFunctionGenserator IRt LCo
—1PowerConverter IntfGeneratedPart -lPowerConverter IntfCommon b
imi IntfGeneratedPart —1TimingIntfCommon

Extra Libs which are specific to the 3erver process
SPECIFIC LDLIEBSSERVER = FinctionGenerator INtLEETwe
—-lPowerConverter Intf3erver
—-1TimingIntf3erver

Extra Libs which are specific
SPECIFIC LDLIEBSRT =

target tog P0ild the bhinaries serwver and RT
correzponding to a 3PLIT and 3hared3erver deplovment
=fl: FesaShared 3.5 (CPU] LeirZeptaltatic R433.5 (CPU)

Fezalhared3erver. § (CPU) .0: 3haredlerver.cpp
S(COMPILE.cpp) §(CHEFLAGS) $< §(QUTPUT_OPTION)

FesaShared 3.5 (CPU): FesaSharedlerver.§(CPU) .o
B-5 (RM) SB §(W) 3B

FILINK.c2) —o (W) §E FesaShared3erwver.$ (CPU) .o §(LDFLAGI] 3
§ (LDLIESSERVER) $ (LDLIBSCOMMON) 4

S(SPECIFIC_LDLIBSSERVERJ $(SPECIFIC_LDLIBSCOHHONJ Y
FILDLIB3ICOMMON] §(LDLIEB33IERVER) %

SISPECIFIC_LDLIBSCOHHON] $[SPECIFIC_LDLIBSSERUER] Y

8 |LDLIES)

LeirSeptaStatiC_RQSS.S(CPU].D: RT433 . cpp
FICOMPILE.cpp) §(CHXFLAGI) §< §(QUTPUT OPTION)

LeirSeptaStatic_R%SS.s[CPU]: LeirSeptaStatic_RQSS.$(CPUJ.D J(DEPENDLIESZ)
E-3(RM) 5B 5 (W3R

§I{LINK.cc) -o §(W)§8 Leir3eptaltatic R433.3(CPU) .o 4

$ (LDLIESRT) 5 (LDLIBSCOMMON] $(LDLIESET) $ (LDLIBSCOMMON)

$ (LDLIB3RT) % (LDLIE3)

2.5.4 Remarks

Testing deployment in mode split implies that all deviceModel of the involved Fesa
classes are instantiated into Shared Memories. So during development and test phase, you
will have several iterations, involving sometimes modification of the design or of the
device instantiation document. In those cases, before you re-launch the new binaries, you
have to delete the existing equipment’s Shared Memory. For this you can either reboot
your FEC or remove manually the equipment’s Shared Memory by :

e LynxOS: using lipcs and lipcrm utility programs.

e Linux: removing the corresponding files located under /dev/shm

3 RDA Equipment Link

Some complex equipment of the accelerator, like Radio Frequency
equipment, needs to be distributed on several computers (Front-End, PLC
etc...). Application level would like to talk to a kind of “Virtual Equipment”
which hides the complexity of the implementation.

So in this case we need to describe a distributed scheduler over several
computers. For the time being Fesa doesn’t bring any specific support for this
kind of complex equipment, but just recommend the usage of the CMW
communication layer (called RDA) and in particular the subscription
functionality and gives some advises to show how to integrate into a Fesa
class such Equipment Link.

3.1Use cases

Let’'s say a complex system deployed on three FECs. This system is described
by three Fesa classes. Two of them are completely independent and in our
example we call them Class1 and Class2, and the third one acts as the Main
class and provide the virtual view of the complex equipment

3.2Design

In this case all the classes are developed independently and you have not to
registered in the node “equipment-link” any particular information

3.3Deployment

From the Deployment Fesa Tool each class are deployed independently on
separate Front-Ends, and the deployment diagram of our example is depicted
in the following figure

TimingSysterm
Titnin
FEC1 FECA1
Timin Timin

Y-St ' Nobs
| Bt =25ang=: |<<59nd>> et |
| TimLik e e e 4] = TimLik |
|
I

Class1FesaSerer % Class2FesaServer

<=5ehd== <=5en == |
______________ } .<________________I

RDAClent

| FEQS |

|) MainClassFesaSarer) I
L 2=gubscribegs> 2=ybsctibegs> B

9

RDASerer

3.4Development

3.4.1 Directories hierarchy

Each class are developed independently and since there is no library call from
one class to an other there is nothing particular to set for the source
development. Simply execute standard Fesa setup:

Fesa Setup Classl O<scratch/edit>

Fesa Setup Class2 3 <scratch/edit>

Fesa Setup MainClass 1 <scratch/edit>

3.4.2 Source development

For Classl and Class2 there is no particular recommendation.
In other hand, for the MainClass, we want to recommend a way to implement
this RDA Link to avoid RDA connection spread everywhere in the source.
From the point of view of the MainClass, one of the EventSource which trigs
the activity is the listening of the subscriptions. So we recommand to define
a customEventSource which should contain all the mechanisms involved in
subscription process:

- create replies Handlers

- start/stop subscription

- process the subscription replies, build a dedicated event payload, and

fire an event to trig the appropriate RTAction

An example can be found in the Fesa class CVS repository: TestEqpLinksRDA
version 0. From the package RT you can find an example of such
customEventSource which is called ReplyHandler.cpp .

The following figure show just the header file of this customEventSource
highlighting some important points.

http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/TestEqpLinksRDA/v0/RT/ReplyHandler.cpp?rev=1.3&cvsroot=FESA-equipment&content-type=text/vnd.viewcvs-markup

A4 This CustomEventsSource subscribe on some deuicefpraperty, then
A/ on each replies fire an event to trig some RealTime activity
class ReplyHandler @ publdic AbstractEventSource f

pubTic:
o : : .
S This class » dEs a simple dimplementatior he callback methods
S defdmad in the rdakreplyHandler class.

: pub1ic rdareplyHandler {

class subscriptionReportHandler
public:

SubscriptionReportHandler (ReplyHandTer®);
virtual void handlereply(const rdaRequesté&, const rdabatad& waluel;
virtual woid handleError{const rdaRequest&, const rdaExceptiond ex);
virtual woid disconnected({const rdaRequesté&);
virtual void reconnected(const rdaRequesté&];
virtual woid cancelled{const rdaReguest&);

private :
ReplyHandler® replyHandler;

c1assb$qentpay1uad ! public RTEventPayload { \\x

public: .

void setCountervalue(long long wall; Inner class which
Tang long getCountervaluel); inuﬂernentsthe
virtual ~EventPayload(];

private: ReplyHandler Interface

Tong Tong value;

Rep1¥Hand1er(j;

~ReplyHandler);

void connect(const string & eventdame J;
RTEvent* wait();

virtuwal void starti);
virtual void stopd);

void consume(RTEVENT® evt]l;

void setvaluelong long waluel;
void setErrorf{char¥* message, rdabata¥ errorbetails);

static ReplyHandler® getInstance(];

private:
friend class subscriptionrReportHandler;

static ReplyHandler*® theInstance;

A Condition variable allows threads to suspend execution
SAuntil some predicate on shared data s satisfied
bool waitingReEWy;

long counterwval;
bool w4

The customEventSource thread is
suspended till the conditionvariable is
notified by the subscription listener

L
read_mutex_1T mutex;
thread_cond_t conditionvariablereplyHandle

rdarequest¥ ro;

rdarbaservice® rda;

S M OnRepor CHar criptionHandler;

ATCadoptcurrentThread adopt; Mandatory because RDA

b relies on JTC thread and
FESA Fwk use posix Thread

4 Interface equipment link

This relationship is used to talk with a Fesa class resident in the same Front-
End. The main difference compare to the “RDA Link” is :

- It is restricted to the scope of the Front-End

- No communication is involved, it’'s a function call
As for the “RDA Link”, there is, for the time being, no type checking at the
compilation time.

4.1Use case

A typical case is a Fesa class, for instance BPMLE which wants to control a
Timing device through the LTIM Fesa class.

4.2Design

Such equipment link requires information in the design

c!) equipment-links
2 uze-interface LTIM 1 from RT task

4.3Deployment

The deployment diagram for our use case is the following: as you can see the
LTIMInterface library is duplicated into BPMLEI process

==gxecUtables== ==ayecutables==
LTIMEerer EBFMLEServer

==gqLLesse=

==liprary== | —m—— ==DataSegment==
LTIMInterface | EFMLEData
==librarys=:=
BFMLEInterface
% M,
==lihrary== =4gCLessE= :
LTIMRT

==library=:= ==librany=>=
i % LTIMInterface {z_‘jci”’_’_ BPMLERT

<2ACEESSEE |
I
W

|
[
|
|
|
|
|
L= ==SharedMemary==
LTiMData
e

<=aALCRSS=>

==gqLLesg=>

4.4Development

4.4.1 Directories hierarchy

Since you use the interface of a deployed class, you have not to setup any
particular directories hierarchy. The only think that you have to do, if you
want to run the binary created in your TEST source directory is:

Let’s say that you want to test your fresh executable on the Front-end where
your timing instance is deployed for instance, “dleiripu”. So we recommend
to structure your TEST directory in a such way:

= I BPMLE

D cvs

[# [wi

B vl
j ES;MON Create a dire_ctory with the name of the targeted FEC
T Then instantiate the Dev_lce_Data fo_r BPM LE
=r Then create two symbolic links pointing on:
) SERVER the binary _ N
CR=] e | the LTIM deviceData document used by dleiripu

v

= BPMLE_M.ppod
= BPMLE_M.ppod o
ﬂiﬂrdakeﬁh

|E$demuyﬁPMLEcpp

dleiripu
= BPMLE_M.ppcd -= ./BPMLE_M.ppod
Bl BPMLED eviceData.xml

El| LTIMDeviceData.xml -= fpsifdscileisdleiripus/data/LTIMDeviceData. xml

4.4.2 Source development

The picture illustrates the typical code that you have to produce to call a
property on your favourite class:

const char rdaTagWame[13] = "enablestatus"
consE char propertyMame[13] = "Enablestatus”;
try

A4 Get the EguipmentIinterface from its name
abstractEqguipmentInterface *pIntf = abstracteEguipmentInterface::getegpIntfrromClassWame! " LTIM"];

A/ Get The property from its name
Property ®pProp = pIntf->getPropertyipropertyilame);

4 Get the LTIM device from its name .
LTIM: :LTIMDev ce¥ pLTIMDey = pIntf-:getbevice("devname"l;

i Erepare the Data object: no type or tagMame checking at compilation time
ecause we use directly rdabata object

rdabata data, filter;

data.insert{rdaTagname, (long intl¢bEnable 7 1 : 017,

A4 Finally <all get/set on the propert in our case the filter s not used
pProp-sset (YpLTIMDev, "", filter, data§

catch({const rdalCErrord ex) |
std::cerr ...

h

	1 Introduction
	2 Friend equipment link
	2.1 Use cases
	2.2 Design
	2.3 Deployment
	2.4 Development
	2.4.1 Directories hierarchy
	2.4.2 Source development

	2.5 How to build a SharedServer and a separate RT process
	2.5.1 Create FesaSharedServer.cpp source file
	2.5.2 Create RT4SS.cpp
	2.5.3 Update the Make.specific
	2.5.4 Remarks

	3 RDA Equipment Link
	3.1 Use cases
	3.2 Design
	3.3 Deployment
	3.4 Development
	3.4.1 Directories hierarchy
	3.4.2 Source development

	4 Interface equipment link
	4.1 Use case
	4.2 Design
	4.3 Deployment
	4.4 Development
	4.4.1 Directories hierarchy
	4.4.2 Source development

