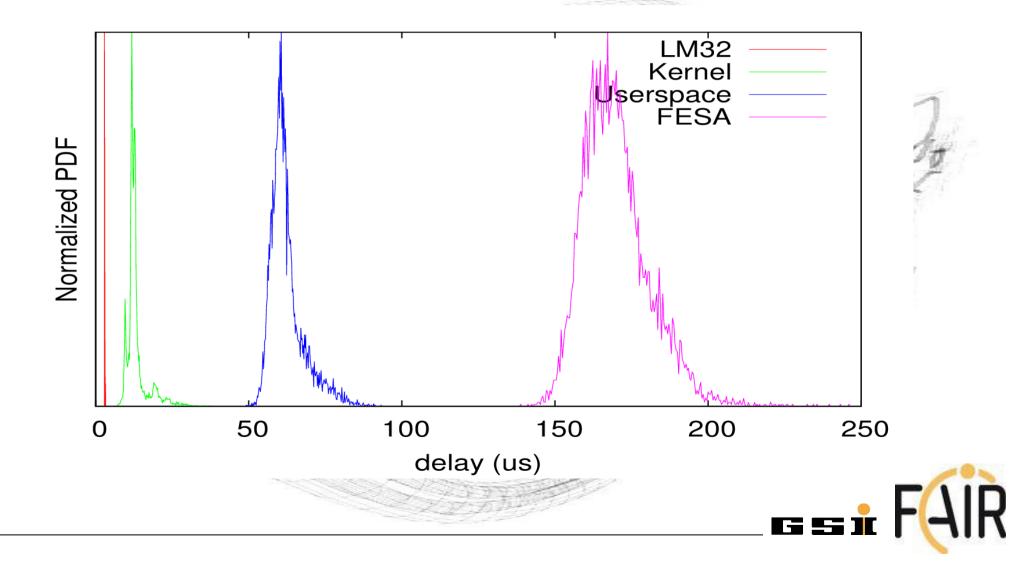
FESA Real-Time Performance

Wesley W. Terpstra

from CS-CO-TG http://bel.gsi.de



Timing requirements for FAIR

- To control FIP cards, need jitter < 20us</p>
- To control kickers, need jitter < 3ns</p>
- → Data master needs delay < 200us</p>

Timing Probability Density Function

Actual delays, tabular

μs	Avg	StdDev	Max	Jitter	
FPGA	0.001	0.001	0.001	0.001	
LM32	2.924	0.058	3.217	0.354	
Kernel	13.29	3.49	37.73	30.61	
User	62.49	5.62	93.33	43.97	
FESA	170.7	10.8	246.1	107.2	

What can be done?

Don't use Linux for FESA

OR

Heavily optimize FESA timing performance

- Do not use FESA to directly control output
- Use FESA to setup hardware to perform output

Questions?

Measurement

Linux 2.6.33.6 with real time patches

- CPU scaling was disabled (causes >200us delay to IRQs)
- CPU S states were disabled (causes >10us delay to IRQs)
- IRQ and tasklet RT priorities set to 99 (otherwise worse jitter)
- User process set to 98
- FESA set to 60

Oscilloscope (LeCroy WaveRunner 600MHz) measured gap of

- Output 1 = raised at same time as Interrupt from FPGA
- Output 2 = raised by software

