RealTime and
Timing

@ Beams Department | Controls

What is a Real Time
System?

¢ Wikipedia
® A system is said to be “real-time” if the correctness of an
operation depends not only upon its logical correctness, but
also upon the time in which it is performed. Real-time systems
are classified by the consequence of missing a deadline.
¢ Classifications:
® Hard: Missing a deadline is a total system failure.

- use hardware e.g. a FPGA, use FESA to configure the
hardware

® Soft: The usefulness of a result degrades after its deadline,
thereby degrading the system's quality of service.

- use FESA

(BE Beams Department | Controls 2

Performance
FESA + RT-Linux

Time between receiving hardware-trigger and execution of a RT-Action

RT jitter with Hetwork load

18686888

55h

10M measurements
1MB/sec network load
10MB/sec filesystem load
used FESA v. 3.0-beta

[BE Beams Department | Controls

The Mission

* Measure a Voltage

* Measurement of “Devicel” triggered by Timing

* Measurement of “Device2” triggered by Timer

* Calibration of the device can be done by client-request

On any problems: fesa-support@gsi.de

@E Beams Department | Controls

mailto:fesa-support@gsi.de

What elements we need?

/ DESIGN -

=~ oN

v

Event Sources Logical EventsScheduling Units RTActions

MeasVolt MeasSchedUnit MeasVoltage
Event 9
@type = generic !

Calibrate @ CalibrateSchedUnit

@type = OnDemand

@E Beams Department | Controls 5

void Calibrate::execute(fesa: :RTEvent* pEvt)

{
std: :vector<Device*>::iterator device;
for(device=deviceCol .begin();device!=deviceCol .end();++device)
{

std: :cout << “Calﬁbration of device: "" << (*device)->getName() << "' successful." =< std::endl;

}

void MeasVoltage::execute(fesa::RTEvent* pEvt)
{
std::vector<Device#®*=::iterator device;
for({device=deviceCol .begin();device!=deviceCol .end();++device)
{
try
{
double measuredvoltage = (rand() % 18008) / (double)l®@; // [0 .. 188]
//(*device) -=voltageFlattop.set(measuredVoltage, pEvt-=getMultiplexingContext());

std::cout "measurement triggered by event: '" << pEvit-=getName() << "'" << std::endl;
std::cout "Voltage-measurement of device: '" << (*device)-=getName() << "' successful”
std::cout "measured voltage: '" << measuredVoltage << "'" << std::endl;
std::cout std::endl;

}

catch(...)

{
std::cout "Exception in user-code!" << std::endl;
throw;

TIP: Use dev + Ctrl + Space +

(]9 Beams Department | Controls deviceCollection = Skeleton

Exercise 1: Class Design

* Create a new class “MyVoltmeter”
* Add a Timer, Timing and an On-Demand event-source and two logical events:
* “MeasVoltEvent” (@type = generic)
* “CalibrationEvent” (@type = on-demand)
* Create two Real Time Actions:
s “MeasVoltage”
* “Calibrate”
* Create a Command-Property
* “Calibrate”
* add a set-server-action “TriggerCalibration”
* add the OnDemandSource as “triggered-event-source”
* Create two Scheduling Units that links the RT actions with the logical events.
* Generate the code
* Add the code in the execute method for the RT actions
* Compile the class

@E Beams Department | Controls ?

What elements we need?

Concurrency Layers

Deploy Unit

Executable

MeasSchedUnit

CalibrateSchedUnit

VS

Concurrency Layers

Deploy Unit

Executable

s -
CalibrateLayer

CalibrateSchedUnit

8
(BE Beams Department | Controls

/
Scheduling Units & Scheduler JaNsg

<= [e] scheduler
~ [e] concurrency-layer _
@ name . MainLayer

@ prio 70

= [e] scheduling-unit :
@ per-device-group no
@& scheduling-unit-name-ref MyVoltmeter::MeasSchedUnit
= [e] scheduling-unit
@ per-device-group no
@ scheduling-unit-name-ref MyVoltmeter::CalibrateSchedUnit

® Each concurrency-layer describes one thread.
® per-device-group
® yes = each device will get it’'s own RTAction-instance

® no = devices which use th_e same concrete-event will
share the same RTAction-instance

@E Beams Department | Controls E

Executable: Mixed

© Since we are working also with Real
Time, the mixed executable iIs required

Instead of server-only.

i

= Rermaowve

(@ extension Add DTD Information...
Edit Namespaces...
Add Befare
Add After

- |e| executable

- O

(@ extension

@E Beams Department | Controls 10

Exercise 2: Deploy Unit

® Create a Deploy-Unit named
“MyVoltmeter DU”

© Create a concurrency layer in order to
schedul the two scheduling-units.

& Remove the server executable and add
the mixed one.

® Generate the code & compile

On any problems: fesa-support@gsi.de

@E Beams Department | Controls 1

mailto:fesa-support@gsi.de

What elements we need?

=== Configurations

|
Devices
: FLATTOP#CTIM#
Logical Events ;
MeasVolt Timer
Event 1 Hz (1000ms)

EVENTS MAPPING

Calibrat : :
~ Configurations -
OnDemand 2

MyODSource

Device
1

\I2_/
(BE Beams Department | Controls

Even

t Mapping

= [g] classes
= [e] MyVoltmeter
= [e] events-mapping
= [e] MeasVoltEvent
= [e] event-configuration
@ name
= [e] Timing
= [g] hardware-event
@ name :
Add any number Of = [e] event-configuration ning
event-configurations © — TimerConfig
- - imer . (timerevent
per logical event. S et
® period 1000
= |e] unused-event-configuration ;
@ name
7 [e] CalibrateEvent

+ [e] event-configuration Dema

@ name StandardConfig
~ [e] OnDemand

leMano-eveni-5t

= [e] on-demand-event-source-ref

& name MvOnDemandSource
= [g] unused-event-configuration

(BE Beams Department | Controls = @ name . NONE

v [e] MyVoltmeter
P [e] events-mapping
= [e] device-instance
& name
P [e] configuration
= [e] events-mapping
— [e] MeasVoltEvent
+ [e] event-configuration-ref
@& name
= [e] CalibrateEvent
~ [e] event-configuration-ref
& name
~ [e] device-instance
@ name
P> [e] configuration
+ [e] events-mapping
< [e] MeasVoltEvent
~ [g] event-configuration-ref
& name
= [e] CalibrateEvent
~ [e] event-configuration-ref
@ name

@E Beams Department | Controls

tandardConfig

i —||: Iracio
evice2

| Stan dardConfig

14

Choose different
event-configurations
per device.

Priorities

Priorities can be changed in the instantiation file
Defaults can be given in the deployment-unit
NICE-Scheduling vs. RR-Scheduling (-noRTSched)
* Use “prio = 19” if you are not root on a system

lif.l CeviceData ExerciseRT DU 0.1.0.instance &3

|I"-.I-:u:|l: IC-:-nt:nt

= wml P wersion="1.0" encoding
= || instantiation-unit :
IZE] A RER et fwwwow 3 org/2001)
@ xsinoMamespaceSchemalocation fileynfsfes-cer-nfsdew/va
b [e] infarmation |
= Iﬂ prig-rmanagemeant

b [€] cla

|| concurrency-layers

< [g

@ prio

@E Beams Department | Controls L

XSl:noNamespaceSchemalocation="/opt/fesa/fesa-model-gsi/2.0.1/xml/timing-simulation/TimingSimulationSchema.xsd”

= [e] timing-simulation timing-domain+)

@ xsi:noNamespaceSchemalocation foptffesa/fesa-model-gsi/1.0.0/xmlftiming-simul
basic-period-length 1200
repetition -1

0 xmilns:xsi ttp:/fwww.w3.0rg2001/XMLSchema-instance
= [g] timing-domain E

@ enable
@ name

< [g] supercycle

@ shift-delay

@ basic-period-multiple

vent-sequence-name-ref sega
| VACC_12

+ [e] event-sequence
@ name
~ [e] event
@ delay !
& eventname FLATTOP#CTIM#45

Needed application arguments:
- timsim

@E Beams Department | Controls - NoRTSched

Exercise 3:
Instantiation

* Define two configurations for the “MeasVoltEvent”
* Timing (Flattop#CTIM#45)
* Timer 1Hz (1000ms)
* Define a configuration for the “CalibrationEvent”
* OnDemand
* Create two devices and assign the configurations to them
* One device should use the configuration Timing for the
“MeasVoltEvent” the other device should use a Timer.
* Both devices should use OnDemand for the
“CalibrationEvent”
e Start the binary by using the startscript (add “-c x86 64" if
needed and -f -timsim)
* Use the FESA-Explorer to trigger the RTAction Calibrate (via the

connected property)

On any problems: fesa-support@gsi.de

@E Beams Department | Controls L

mailto:fesa-support@gsi.de

	RealTime and Timing
	What is a Real Time System?
	Performance – FESA + RT-Linux
	Folie 4
	What elements we need?
	Folie 6
	Exercise 1: Class Design
	Slide 8
	Scheduling Units & Scheduler
	Executable: Mixed
	Exercise 2: Deploy Unit
	Slide 12
	Event Mapping
	Folie 14
	Folie 15
	Timing Simulation
	Exercise 3: Instantiation

