Design
- specify public interface
- specify internal data

- specify RT actions

Welcome to the

FESA3 Hands-On cours

Test

- start binary
- launch navigator tool
- check output

This manual will guide you trough the development of a first, simple FESAS3 class

Instantiate
- add device instance
- bind logical events

- define initial values
- define device name

C++ Code

- implement RT actions
- build class library

Binary
- define deployment unit
- define process type

- configure scheduling

- compile and link binary

Hands-On for FESA3 > v1.0.0



- Sp€
- Sp€
- SpE

The Mission

Implement a random number generator using FESA

Requirements (l):
» Generate one random number per second
 Allow clients to subscribe to the generated random numbers

 Allow clients to specify max-limit for the random numbers (greatest

number which can be generated)

On any problems: fesa-support@gsi.de

Hands-On for FESA3 > v1.0.0



A FESA binary is built from any number of FESA classes and
one FESA deploy-unit. Each class describes one equipment component. The
deploy-unit is needed to couple all these classes.

Design : : :
- specify public interface In this tutorial we model the most simple case:

- specify internal data One class which used by one deploy-unit

- specify RT actions
Install the FESA3 Eclipse plug-in as described on the FESA3 web-page
Start Eclipse

Open menu File—New—Project.. and choose FESA—New FESA Class
Name your class: ,HandsOnClass®

Choose the newest available FESA3 version

Choose the empty template as class template and press “Finish *

C++ Code

- implement RT actions
- build class library

- add device instance
- bind logical events
- define initial values
- define device name

Binary
- define deployment unit
- define process type

- configure scheduling

- compile and link binary

Hands-On for FESA3 > v1.0.0



Now you should see an open XML document, called “HandsOnClass.design”.
This document will be used to model your FESA3 class.
: In order to view HTML documentation for the document
Design open the FESA Browser

- specify public interface Window—Show View—sother—FESA—FESA Browser
- specify internal data

- specify RT actions You can switch between the design-view and the source-view of the XML

document by clicking at the corresponding tabs at the bottom.

As well you can activate the outline-view in the Eclipse menu-bar:
Window — Show View —Qutline

This tutorial will use the design-view for all further steps. Later you may
choose a view according to your personal preference.

- add device instance
- bind logical events
- define initial values
- define device name

C++ Code

- implement RT actions
- build class library

Binary
- define deployment unit
- define process type

- configure scheduling

- compile and link binary

Hands-On for FESA3 > v1.0.0



- spe
- spe
- spe

- [e] data
— [e] device-data
[» [e] configuration
b [e] setting
I [e] acquisition
= [e] global-data
[e] configuration
[e] setting
[e] acquisition

/ Theoretical background

Data-flow — Acquisition

=~ [e] global-data

[e] configuration
~ [g] setting
5 e
persistent
name
multiplexed
— [e] scalar
type

true

true

bool

Client < FESA-Server part

Data-flow — Setting

Client <+ »[FESA-Server part

< FESA-RT part

— » FESA-RT part

Hands-On for FESA3 > v1.0.0



Now we will start to fill our empty class design. The goal is to design
a class which generates one random number per second.

~ [¢] data We start with defining the definition
_ v [&] device-data of the needed data-containers. Just
Design v (8 setting add all missing elements, like

- specify public interface ~ [ field shown in the picture.

- specify internal data persistent true (right-click-->add-child)
- specify RT actions name randomNumberMax

multiplexed false . .
e o The random number itself is stored

type int32 t as “acquisition” data, since we
< [¢] acquisition want to send it to the client.
= [g] field
name randomNumber The maximum number which can
multiplexed false be generated shall be configurable
¥ [E scalar _ by the client. So we choose to
ype ezt store it as “setting”-data.

- build class libra Click on each element to view the HTML documentation in the FESA Browser!

Binary
- define deployment unit
- define process type

- configure scheduling

- compile and link binary

Hands-On for FESA3 > v1.0.0



= [e] interface
= [e] device-interface
P [e] setting
P [e] acquisition
= [e] global-interface
P [g] setting
[e] acquisition

Theoretical background

Client-code-examples :
device = rda — getDeviceHandle( devicename, servername );
data = device — get ( propertyname, cyclename, context );

¥ e

visibility
name
multiplexed
= [e] value-item
name
direction
< [g] scalar
type
— [e] data-field-ref
field-name-ref
P[] update-flag-item
l> [e] cycle-name-item
< [g] set-action
— [e] server-action-ref
server-action-name-ref
P[] get-action

operational
MyProperty
false

myValueltem
INOUT

bool

mySettingField

MySetAction

device — set ( propertyName, cyclename, settingdata, context );
Request = device — monitorOn ( propertyName, cyclename, replyhandler, context );

device — monitorOff ( request );

e actions _
: = [e] get-server-action
 get/set-server-action (1..n) ® implementation
* @implementation name
° @name v [e] EEF-sewer-actinrw
implementation
: name

default
MyGetAction

custom
MySetAction

Hands-On for FESA3 > v1.0.0



In order to provide client-read-access to the defined internal data,

we need to add properties in the “interface”-part of our class.

v [¢ interface We define an acquisition-property,
~ [g] device-interface (setting?, acquisition which can be read by the client via
b [ setting “‘Get” or “Subscribe”.

. = [e] acquisition ({acquisition-property
DeSIQn = [e] acquisition-property 1 ) :
- Specify pub“c interface ® visibility ooerational Value-ltems are used to outline
- specify internal data o rome o rber which data is transferred by a
- specify RT actions ® multiplexed e property. Here we connect the

< [ value-item value-item to our field, in order to
® name randomNumber transfer our internal data.

@ direction ouT
- [ scalar Only the elements which need to
@ type int32_t be modified are shown here !!

= [e] data-field-ref
@ field-name-ref

randomNumber The get-action models the C++

~ [e] get-action EAEEEECREN implementation of the data-transfer.
¥ [e] server-action-ref Note that the XML file will show an

(@ serveraction-name- GetRandomMumber error as Iong as the action does not

exist:

C++ Cod

- implement RT ac
- build class library

= [e] actions

< [g] get-action

@ server-action-name+ GetRandomNumber

~ [e] get-server-action
@ implementation default
@ name GetRandomNumber

You can check the concrete error message in the “source”-view. (click on red dot)

</cycle-stamp-item=

70 =get-action=

@ 71 =server-action-ref server-action-name-ref="GetRandomNumber" /=
</get-action>

<facquisition-property=<facquisition=</device-interface>




Design
- specify public interface
- specify internal data
- specify RT actions

C++ Cod

- implement RT ac
- build class librar

Now we proceed in the same way for our setting-field
‘randomNumberMax”, in order to give the client write-access to it..

= [e] set-serveraction
@ implementation
@ name

~ [e] get-server-action
@ implementation
@ name

- [g] interface
~ [g] device-interface
= [g] seftting
= [e] setting-property
@& multiplexed
@ name
@ visibility
< [g] value-item
@ direction
@ name
~ [e] scalar
@ type
- [g] data-field-ref
@ field-name-ref
= [e] set-action
= [e] serveraction-ref
@ server-action-name-ref
< [e] get-action
= [e] server-action-ref
@ server-action-name-ref

({(description*), (disab

default
SetRandomNumberLimits

ng-

((description*), (disab
default
GetRandomMNumberLimits

ng-i

(device-interface?, global-
(setting?, acquisition?)
((command-property*, sett
(({description*), (filter
false
RandomNumberLimits
operational

((description*, (scalar | arre
INOUT
randomNumberMax

int32_t

randomNumberMax

(server-action-ref | abstract

SetRandomNumberLimits

{server-action-rer | apstract

GetRandomMNumberLimits

This time we start with the actions,
in order to use the auto-completion
feature.

Again we choose implementation =
“default”. So we don't need to
provide own C++ code for this
action.

A setting-property can be written by
a client with “Set” or re-read via
“Get”.

Note that now you can choose the
get- and set-actions from a list,
because we defined the actions in
advance.

n for FESA3 > v1.0.0



Theoretical background

e events e actions
e sources e rt-action (1..n)
oo * timer * @name
- Spe  timing  notified-property (1..n)
* on-demand * @property-name-ref
e on-subscription e @automatic
* custom _
* logical-events (1 .. n) b [¢] actions
* @use P [e] events
* @name b [e] scheduling-units
 @type
ehp  scheduling-units
» scheduling-unit (1..n)
e @name
* rt-action-ref

* logical-event-ref

Hands-On for FESA3 > v1.0.0



Finally we will design the random number generation itself. For this
purpose we use a timer-event-source which periodically triggers an action.

¥ [e] events First we define the event-source
v [e] sources and the logical-event which is used
I> [e] timing-event-source by this source.
Design b (¢l timer-event-source Right-click on the root-element
- specify public interface v [¢l logical-events “equipment-model” in order to add

- specify internal data v [¢] logical-event the element “events”
- specify RT actions ® use required '

@ name timerEvent
@ type timer

All actions which do not interact
o i with the client are called “rt-action”.
= actions . -
e This is what we need for the
® name pmreawesll NUMber generation. We as well
< (& notified-property choose to automatically notify all
@ property-name-ref RandomNumber clients which subscribed to our
@ automatic true “« ”
property “GetRandomNumber”.

C++ Cod

- implement RT ac

- build class librar < [&l scheduling-units In order to connect our rt-action

< [e] scheduling-unit with the logical-event, we need to
Ell e add a “scheduling-unit”
= [e] rt-action-ref . . . :
@ rt-action-name-ref GenerateRandomNumber Agam rlght-C“Ck on the rOOt-

v [l logical-event-ref element in order to add the
@ logical-event-name-ref timerEvent element “Schedu|ing_units”_

Finally you finished the design-phase! Now re-check if your design is valid

by pressing &, and fix all remaining bugs.

After that, trigger the code generation by pressing the ﬁ'button. This will
generate the C++ source code skeleton of your class.

n for FESA3 > v1.0.0



Theoretical background

« C++ coding

e Use the Wiki !l
- Spe  “FESA3 C++ Code Snippets”
" SP9 » “Quick overview on how to develop, run and test a simple FESAS3 binary”

"9 » All slides of the fesa-courses are available in the Wiki !

» First compile the class to enable the eclipse-auto-completion.
« Than start coding

 Disable the Eclipse-Code Analysis, if it does not work reliably
* Window — Preferences — C++ — Code Analysis
« Uncheck all boxes !

Hands-On for FESA3 > v1.0.0



As next step we will add some C++ code in order to generate the random-numbers itself. To do so,
open the file “HandsOnClass/src/HandsOnClass/RealTime/GenerateRandomNumber.cpp” from the
Eclipse-Project-Explorer and modify it, according to the source-code below.

After you finished the implementation you can compile your FESA class library. Go to the project folder and
execute the make target ,all x86_64“. This can be done in Eclipse using the ,Make Targets® view in the FESA
or C++ perspective.

By executing the target ,clean® you can remove all object files and libraries from previous builds.

all i686

all x86_64 void GenerateRandomNumber::execute(fesa::RTEvent* pEvt)
clean
std::vector<Device*>::iterator device;
for(device=deviceCol_.begin();device!=deviceCol_.end();++device)
{
/I get upper limit for random-numbers from internal field
int32_t rand_max = (*device)->randomNumberMax.get(pEvt->getMultiplexingContext());

/I generate random-number between 0 and rand_max
C++ COde int32_t rand_number = rand() % ( rand_max + 1);

- implement RT actions
- build class library /I produce some output
std::ostringstream message;
message << " Produced random number: " << rand_number << " for device: " << (*device)->getName();
LOG_TRACE_IF(logger, message.str());
std::cout << message.str() << std::endl;

/I save produced random-number in internal field
(*device)->randomNumber.set(rand_number,pEvt->getMultiplexingContext());

You may want to copy + paste this source code!

Hands-On for FESA3 > v1.0.0



- Sp€
- Sp€
- SpE

Theoretical background

e deployment-unit N ellder it
e class (1 ..n) @ xmins:xsi
o exeCUtable : Ezﬂ :cHSI:il:Dzr:amemaceSchemaLucatiDn
* mixed [» :infnrmatinn
® rt P [e] ownership
e server b [e] class
+ scheduler B
e concurrency-layer (1..n) b [ executable
* @name
* @prio

* @event-queue-size
» scheduling-unit (1..n)
* @per-device-group
e @scheduling-unit-name-ref
e prio-management

Hands-On for FESA3 > v1.0.0



A FESA binary is built from any number of FESA classes and one FESA deploy-unit. Each class describes on€
equipment component. The deploy-unit is needed to couple all these classes.
To create a deploy-unit project, choose: File—New—Project.. =FESA—New FESA Deploy Unit.
According to the class we name it “HandsOnDeployUnit”.

Only the items that you need to add or change are listed
here. When you finished editing the deployment document,
validate g, it and generate ﬁ'the C++ source code.

- [e] class
[e] class-name HandsOnClass
[e] class-majorversion
[e] class-minorversion
[e] class-tiny-version
[e] device-instance

= [e] executable
= [g] mixed
@ extension

Note: After adding the class name, save the
document. The plug-in will automatically add the
elements “path” and “include”. Now you will be able
to pick the desired scheduling-unit from a list.

To generate the executable FESA binary execute the make
target ,all x86_64" as well for the deploy-unit.

- [e] scheduler
= [g] concurrency-layer
@ name
@ prio
= [g] scheduling-unit
@ perdevice-group
@ scheduling-unit-name-ref

(concurrency-layer)+
(scheduling-unit)+

TimerLayer
7

no

HandsOnClass:TimerschedulingUnit

Hands-On for FESA3 > v1.0.0



Theoretical background

* classes
- opd . rolllng-buffer_
- spe * events-mapping
- SpE€

* logicalEventName (1..n)
« eventConfiguration (1..n)

» device-instance (1..n) ¢ @name
y @n?me , » concrete-event (source-specific design)
* configuration
. < [e] instantiation-unit
Settlng. @ xmins:xsi
. myFleld @ xsi:noNamespaceSchemalocation
e value b [e] information
o eventS-mapping i [e] prio-management

. [e] classes
» LogicalEventName (1..n) < [& HandsonClass

 global instance (1)

L]

b [g] rolling-buffer
° > [e] events-mapping

P

P

P

° prio_.r.r.]anagement [e] device-instance

[e] device-instance
[e] global-instance

Hands-On for FESA3 > v1.0.0



For the next step you need to configure on which front-end (FE
your binary should run. To do so, open the deploy-unit document and
push the ,Add FEC" = button. Put in the hostname of the front-end on

which you currently work.

v [¢ classes Configure the devices of
v [e] HandsOnClass your class as shown on the

b [ multiplexing screenshots. Test
v [g] eve'ntS-mappmg - start binary
+ [e] timerEvent - launch navigator tool
= [e] event-configuration - check output

@ name OncePerSecond
= [g] Timer
= [e] timerevent
@ period
I* [e] unused-event-configuratio

Note that we use the event- andsOnClass

Configuration = [e] device-instance |nStantIate

“OncePerSecond” which we 0 sl TestDevicel - add device instances
. . P [e] configuration c .

defined at our own in the - bind logical events

PR A ¥ [2] events-mapping - define init values
section “events-mapping”. > [ timerEvent _ define device names

~ [e] event-configuration-ref

Validate your instantiation ® name OncePerSecond

document by pressing ".‘ . < [e] global-instance
@ name HandsOnGloballnstance

Later you can find this file in: HandsOnDeployUnit/src/test/[FEC]

- comp;’ile and link binary

Hands-On for FESA3 > v1.0.0



De:
- specify pu
- specify int
- specify RT|

In order to run your binary open a fresh Linux console window and start ° 2 Test
your binary using the generated start script. : B es

To do so use the following commands in your Linux console:
(Replace [myWorkspaceLocation] and [myFEC] according to your local setup)

- start binary
- launch navigator tool
- check output

cd [myWorkspaceLocation]/HandsOnDeployUnit/src/test/[myFEC]

Istart_HandsOnDeployUnit_M.sh -c x86_64

You can stop the execution by pressing [STRG+C].

Use the argument “-help” to get an overview of all possible command line
parameters of the start script. Use “-f -help” as argument to see all
possible command line parameters of the FESA binary itself.

Instantiate

dd device instance
nd logical events

. . efine initial values
Now you should be able to remotely access the device “TestDevice1” efine device name
across the middleware. One client for this purpose is the FESA Explorer.

Open the instantiation document and press: “Launch FESA Explorer”£s.

J
- define deployment unit
- define process type
- configure scheduling
- compile and link binary

Hands-On for FESA3 > v1.0.0



Once the FESA Explorer is open select the “TestDevice1” and double-

click on the property “RandomNumberLimits”.
Put a value into the field “randomNumber_max” and press “Set” in
order to send the data via the middleware to your class.
. Test
Now double-click on the property “RandomNumber” and press - start binary
- specify i “Subscribe”. If you implemented everything in the right way, you should - launch navigator tool
- specify receive one random number per second. - check output

3
FesaExplorer
File Mode @ 2013-01-10 13:48:01

Device Selection 3| TestDevicel@ALL RandomNumberlimits = rTestDEVicel@ALL' RandomNumber x

)

‘|l cycte Name: -—- Cycle Stamp: 1970-01-01 00:00:00.0 Acq.Stamp: + 0 ns

¢ [ HandsOnDeplownit as7.
[5) TesiDevice 1 2| Fields

CO n g ratu I atIO n S ' HandsOnGloballnstan) &9 randomNumber 55923258

If you arrived here you [ S
finished the FESA3 A EEECREY:
HandsOn tutorial. On , :

T — Instantiate

any problems please do O B L.
not hesitate to check the (=" ;?gg;g; 'Qiﬁ,rt‘ge
FESA Wiki or to contact |maee—ce—m—m—g ne initial values

TestDevicel °

the FESA support team. [ ne device name

RandomNumber -

Iﬁ 47:00 - CMW-DIR Flushing cache

For further training you may want to add a field “randomNumber _min”
to your class and write a custom-server-action which produces
additional output. Feel free to extend your class to whatever you want!

As well check the HTML documentation in the FESA Browser if you
face any unknown FESA XML elements.

Hands-On for FESA3 > v1.0.0



The Mission (ll)

Implement a random number generator using FESA

Requirements (1):
* Generate one random number per second
» Allow clients to subscribe to the generated random numbers
» Allow clients to specify max-limit for the random numbers (greatest
number which can be generated)

Requirements (ll):
 Allow clients to specify min-limit for the random numbers (smallest
number which can be generated)
» Generate some console-output for the class, whenever a client got data.
(custom get-server-action)

No guideline-support here! On any problems, feel free to ask!

On any problems: fesa-support@gsi.de

Hands-On for FESA3 > v1.0.0



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

