Test

- start binary
- launch navigator tool
- check output

Design
- specify public interface
- specify internal data

- specify RT actions

Welcome to the FESA3 Hands-On cours

This manual will guide you trough the development of a first, simple FESA3 class

Instantiate

- add device instance
- bind logical events

- define initial values
- define device name

C++ Code

- implement RT actions
- build class library

Binary
- define deployment unit
- define process type

- configure scheduling

- compile and link binary

Hands-On for FESA3 v0.8.1

A FESA-binary is build from any number of FESA-classes and
one FESA-deploy-unit. Each class describes one equipment-component. The
deploy-unit is needed to couple all these classes.

Design . _
- specify public interface In this guideline, we model the most simple case:

- specify internal data One class, used by one deploy-unit

- specify RT actions
Install the FESAS Eclipse plug-in as described on the FESA3 web-page
Start Eclipse

Open menu File - New - Project.. and choose FESA - New FESA Class
Name your class: ,HandsOnClass*

Choose the newest available FESA-version

Choose the empty template as class template and press “Finish “

- add device instance
- bind logical events

- define initial values
- define device name

C++ Code

- implement RT actions
- build class library

Binary
- define deployment unit
- define process type

- configure scheduling

- compile and link binary

Hands-On for FESA3 v0.8.1

Now you should see an open xml-document, called “HandsOnClass.design”.
This document will be used to model your class.
. In order to view html-documentation for the document,
Design open the FESA-browser (not available on SLC5/RedHat5 ! Ask FESA-support!)

- specify public interface Window — Show View - other - other . FESA browser
- specify internal data

- ify RT acti : : : :
specify RT actions You can switch between the design-view and the source-view of the xml-

document by clicking at the corresponding tabs at the bottom.

As well you can activate the outline-view in the eclipse menu-bar:
Window - Show View - Outline

This guideline will use the design-view for all further steps. Later you may
choose a view, according to your personal preference.

- add device instance
- bind logical events

- define initial values
- define device name

C++ Code

- implement RT actions
- build class library

Binary
- define deployment unit
- define process type

- configure scheduling

- compile and link binary

Hands-On for FESA3 v0.8.1

Design
- specify public interface
- specify internal data
- specify RT actions

Now we will start to fill our empty class-design. The goal is to design
a class which generates one random number per second.

— [e] data
= [e] device-data
+ [e] setting
= [¢] field
persistent
name
multiplexed
= [e] scalar
type
= [e] acquisition
= [¢] field
name
multiplexed
~ [e] scalar
type

true
randomMNumberMax
false

int32 t
randomNumber

false

int32_t

We start with defining the definition
of the needed data-containers. Just
add all missing elements, like
shown in the picture.
(right-click-->add-child)

The random-number itself is stored
as “acquisition” data, since we
want to send it to the client.

The maximum number which can
be generated shall be configurable
by the client. So we choose to
store it as “setting”-data.

Click on each element to view the html-documentation in the browser!

Binary
- define deployment unit
- define process type

- configure scheduling

- compile and link binary

Hands-On for FESA3 v0.8.1

In order to provide client-read-access to the defined internal data,

we need to add properties in the “interface”-part of our class.

v [e] interface We define an acquisition-property,
< [g] device-interface (setting?, acquisition which can be read by the client via
b [el setting “Get” or “Subscribe”.

Design = [e] acquisition ({acquisition-property
- specify public interface e T— | Value-Items are used to show
i visibility operational : c
- specify internal data which data is transfered by a
- specify RT actions & name rendomnumber roperty. Here we connect the
@ multiplexed false property.

< [value-item value-item to our field, in order to
® name randomNumber transfer our internal data.

@ direction ouT
- [scalar Only the elements which need to
@ type int32_t be modified are shown here!

= [e] data-field-ref
@ field-name-ref

randomNumber The get-action models the C++
~ [e] get-action EAEEEEEAEN implementation of the data-

¥ [e] server-action-ref transfere. Note that the XML-File
@ server-action-name- GetRandomMumber WI|| ShOW an error as |0ng as the
action does not exist:

C++ Cod

- implement RT ag
- build class librar

= [e] actions

< [g] get-action

@ server-action-name+ GetRandomNumber

~ [e] get-server-action
@ implementation default
@ name GetRandomNumber

You can check the concrete error-message in the “source”-view. (click on red dot)

</cycle-stamp-item=

70 =get-action=

@ 71 =server-action-ref server-action-name-ref="GetRandomNumber" /=
</get-action>

<facquisition-property=<facquisition=</device-interface>

n for FESA3 v0.8.1

Design
- specify public interface
- specify internal data
- specify RT actions

C++ Cod

- implement RT ag¢
- build class librar

Now we proceed in the same way for our setting-field
“‘randomNumberMax”, in order to give the client write-access to it..

~ [e] actions
- [e] set-server-action
@ implementation
@ name
< [e] get-server-action
@ implementation
@ name

= [e] interface
~ [e] device-interface
+ [g] setting
~ [g] setting-property
@ wisibility
@ name
@ multiplexed
= [e] value-item
@ name
@ direction
~ [g] scalar
@ type
= [e] data-field-ref
@ field-name-ref
- [e] set-action
< [e] serveraction-ref
@ server-action-name-ref
~ [e] get-action
~ [e] server-action-ref
@ server-action-name-ref

default
SetRandomMNumberiMax

default
GetRandomNumberMax

operational
RandomNumberLimits
false

randomMNumberMax
INOUT

int32_t

randomMNumberiMax

SetRandomNumberMax

GetRandomNumberiMax

This time we start with the actions,
in order to use the auto-completion
feature.

Again we choose implementation =
“default”. So we don't need to
provide own C++ code for this
action.

A setting-property can be written by
a client with “Set” or re-read via
“Get”.

Note that now you can choose the
get- and set-actions from a list,
because we defined the actions in
advance.

n for FESA3 v0.8.1

Finally we will design the number-generation itself. For this purpose
we use a Timer-event-source which periodically triggers an action.

v [e] events First we define the event-source
0o and the logical-event which is used
b [e] timing-event-source by this source.
Design b [e] timer-event-source Right-cllick on the root-element
- specify public interface v [logical-events “equipment-model” in order to add

- specify internal data ~ [¢] logical-event the element “events”
- specify RT actions ® use required :

@ name timerEvent

@ type timer All actions which do not interact
o i with the client are called “rt-action
= actions 1
e that's what we need for the
@ name GenerateRandomiNumber number'generatlon. We a.S We”
< [l notified-property choose to automatically notify all
@ property-name-ref RandomNumber clients which subscribed to our
@ automatic true “ »
property “GetRandomNumber”.

n

C++ Cod

- implement RT ag¢

- build class librar < [& scheduling-units In order to connect our rt-action

< [@ scheduling-unit with the logical-event, we need to
BEINE e e add a “scheduling-unit”
~ [g] rt-action-ref . . h I k h .
@ rt-action-name-ref GenerateRandomNumber Agaln rlg t_C ICK 0N t € TOOt-

< (@ logical-event-ref element in order to add the
@ logical-event-name-ref timergvent element “Schedu”ng_units”_

Finally you finished the design-phase! Now re-check if your design is valid

by pressing ¥ and fix all remaining bugs.

After that, trigger the code generation by pressing the & button. This will
generate the C++ source code skeleton of your class.

n for FESA3 v0.8.1

As next step we will add some C++ code in order to generate the random-numbers itself. To do so,
open the file “HandsOnClass/src/HandsOnClass/RealTime/GenerateRandomNumber.cpp” from the
Eclipse-Project-Explorer and modify it, according to the source-code below.

After you finished the implementation, you can compile your FESA-class library. Go to the project-folder and
execute ,make all. This can be done in Eclipse using the ,Make Targets* view in the C++ perspective.

By executing ,make clean” you can remove all older libraries and object files.

all

| void GenerateRandomNumber::execute(fesa::RTEvent* pEvt)
clean

std::vector<Device*>::iterator device;
for(device=deviceCol_.begin();device!=deviceCol_.end();++device)
{

/I get upper limit for random-numbers from internal field

int32_t rand_max = (*device)->randomNumberMax.get(pEvt->getMultiplexingContext());

/I generate random-number between 0 and rand_max
C++ COde int32_t rand_number = rand() % (rand_max - 1);
- implement RT actions
- build class library /I produce some output
std::ostringstream message;
message << " Produced random number: " << rand_number << " for device: " << (*device)->getName();
LOG_TRACE_IF(logger, message.str());

/I save produced random-number in internal field
(*device)->randomNumber.set(rand_number,pEvt->getMultiplexingContext());

You may want to copy + paste this source code!

Hands-On for FESA3 v0.8.1

A FESA-binary is build from any number of FESA-classes and one FESA-deploy-unit. Each class describes
one equipment component. The deploy-unit is needed to couple all these classes.

To create a deploy-unit-project, choose: File -~ New - Project.. ~ FESA - New FESA Deploy Unit.

According to the class, we name it “HandsOnDeployUnit”.

Only the items that you need to add or change are listed
here. When you finished editing the deployment document,
validate & it and generate S the C++ source code.

- [e] class
[e] class-name HandsOnClass
[e] class-majorversion

[¢] class-minor-version To obtain the executable binary-file, trigger ,make all* as

[e] class-tiny-version well for the deploy-unit.

[e] device-instance

: - [g] scheduler
+ [g] executable = [g] concurrency-layer
= [g] mixed @ name TimerLayer
@ extension @ event-queue-size 7
@ prio 7
= [e] scheduling-unit

Note: After adding the class-name, save the
document! The plugin will automatically add the
elements “path” and “include”. Now you will be
able to pick the right scheduling-unit from a list.

@ per-device-group no
@ scheduling-unit-name-ref HandsOnClass:: TimerschedulingUnit

Hands-On for FESA3 v0.8.1

For the next step you need to configure on which front-end
your binary should run. To do so, open the deploy-unit document and
push the ,Add FEC" & button. Put in the name of the front-end on which

you currently work.

= [g] classes
= [e] HandsOnClass
> [e] multiplexing
< [g] events-mapping
= [e] timerEvent
= [e] event-configuration
@ name
= [g] Timer
= [e] timerevent
@ period
I* [e] unused-event-configuratio

OncePersecond

Note that we use the event-
configuration
“OncePerSecond” which we
defined at our own in the
section “events-mapping”.

Validate your instantiation
document by pressing .

andsOnClass
= [e] device-instance
@ name
> [e] configuration
< [] events-mapping
- [e] timerEvent

~ [e] event-configuration-ref

@ name
= [g] global-instance
@ name

Press 1:} to create a new
iInstance of your class for
this front-end.

Configure the devices of
your class, as shown on the
screen-shots.

TestDevicel

OncePerSecond

HandsOnGloballnstance

Later you can find this file in: HandsOnDeployUnit/src/test/[FEC]

- com[ﬁle and link binary

Test

- start binary
- launch navigator tool
- check output

Instantiate

- add device instances
- bind logical events

- define init values

- define device names

Hands-On for FESA3 v0.8.1

In order to run your binary, open a fresh Linux-console, browse to the
instantiation-folder and start your binary via the generated start-script.

B} To do so, use the following commands in your Linux-shell: i Test
- specify pu (Replace [myWorkspaceLocation] and [myFEC] according to your local setup) - start binary
- specify int - launch navigator tool
- specify RT| cd [myWorkspaceLocation]/[HandsOnDeployUnit/srcitesti[myFEC] - check output

JIstartScript.sh -noRTSched -vv

“-noRTSched” allows you to run the progress without rt-priorities.
Very verbose(-vv) will show you the log-messages of all log-levels.
You can stop the execution by pressing [STRG+C]. Use the argument
-help to get an overview about all possible command-line-parameters.

Congratulations! Now you can remotely access the device “TestDevicel” Instantiate
across the middleware. One client for this purpose is the Navigator. dd device instance

Open the instantiation document and press: “Launch FESA Navigator” i, SulsRitle g aiEis
fine initial values

efine device name

Binary
- define deployment unit
- define process type

- configure scheduling

- compile and link binary

Warning: This page probably is
already outdated on release.
Contact the FESA-Support on

any problems
Hands-On for FESA3 v0.8.1

Once the Navigator opened, select the “TestDevicel” and double-click
on the property “RandomNumberLimits”.

Put some value into the field “randomNumber_max” and press “Set”, in
order to send the data via the middleware to your class.

Now double-click on the property “RandomNumber” and press

“Subscribe”. If you implemented everything in the right way, you should
receive one random-number per second.

3
FesaExplorer
File Mode @ 2013-01-10 13:48:01

Device Selection 3| TestDevicel@ALL RandomNumberlimits = rTestDEVicel@ALL' RandomNumber x

)
¢ [HandsOnDeplownit as7.
TES\DEV\:el 2|l Fields
Handsonclopainstant | @ randomNumber 5592328
[ul I 1|

CongratUIationS! Cycle Selection [Jon change | Unsubscribe

‘|l cycte Name: -—- Cycle Stamp: 1970-01-01 00:00:00.0 Acq.Stamp: + 0 ns

If you arrive here, you |u EEELEE:
finished the FESA3 , :
HandsOn course. On .

any problems, dont T B
hesitate to check the
FESA-Wiki or to contact |pRE

Property: RandomNumber -

the FESA-support-team. rrmrrres

For further training, you may want to add a field “randomNumber_min”
to your class and write a custom-server-action which produces
additional output. Feel free to extend your class to whatever you want!

As well check the html-documentation in the FESA-Browser if you face
any unknown xml-elements!

Test

- start binary
- launch navigator tool
- check output

Instantiate

| device instance
d logical events

ne initial values
ne device name

Hands-On for FESA3 v0.8.1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

