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Abstract 
 
With the release of FESA Version 2.9 an actual measurement of the 
timing behavior is advisable. As FESA 2.9 (on LynxOS) now provides 
the possibility to set a priority at startup of a FESA-executable, this 
behavior is also of interest. The influence of the optimization flags on 
the performance has been investigated. Within this document the 
internal processes such as kernel threads with very high priority are 
not treated. 
The possibility to compile the RT part in a single-thread-executable 
(make rt) is also taken into account within the timing measurements. 
In principle the same measurements can be done for a Linux driven 
RIO 3 for comparison purposes.  
 
Setup and procedure: 
 

 RIO3 CPU, 254MB 
 LynxOS 
 FESA 2.9 
 CTRP Timing board 
 VMOD-IO with VMOD-DOR piggy-back 
 LeCroy 9314M Oszilloscope 

 
Trigger-Generation:  
 
An LTIM trigger was used to provide the same trigger on the LEMO 
output connector of the CTRP as on the interrupt level for the RT 
Action execution. The definition of the trigger was done in the LTIM 
FESA class. LEMO output #1 of the CTRP module was connected to the 
oszilloscope 50 Ohm input for a sharp pulse. 
 
RT Action: 
 
For this measurement a very simple FESA class was designed. No 
SERVER action, one instance using the predefined LTIM event and one 
RT Action. For the measurements different versions of this RTAction 
were compiled. Three versions for toggling the channels 1-3 of the 



DOR module and a version as a separate RT thread using command 
“make rt”. The example source code is listed in box 1. 
 
 
// 
//  FESA framework  June 2004. 
// 
// Use this code as a starting-point to develop your own equipment class 
 
#include <acquisition.h> 
 
// INPUT fields:  
// OUTPUT fields:  
 
extern "C" { 
#include <drvrutil/dioaiolib.h> 
#include <gm/moduletypes.h> 
} 
 
 
 
using namespace thoffman_ADemo; 
 
acquisition::acquisition(const string& name, AbstractRTAction::RTActionConfig& rtActCfg) : 
 RTAction<RTEvent, thoffman_ADemoGlobalStore, thoffman_ADemoDevice>(name, rtActCfg){} 
 
void acquisition::execute(RTEvent * pEv){ 
   
  int ret, nibble; 
    
     
  DioRead(IocVMODDOR,0,1,&nibble); //get bit state (usually 0 at start = level high) 
 
  ret= DioWrite(IocVMODDOR, 0, 1, (nibble | 0x1)); //set to 1 (level low) or vv, for channel this is 0x2, 
                                                                          //  for 3 it is 0x4 and so on. 
     
  ret= DioWrite(IocVMODDOR, 0, 1, (nibble & 0x1)); //set to 0 again (level high) or vv 
 
} 

 
Box 1: RT Action source code, part of the thoffman_ADemo FESA class. 
 
 

Measurement: 
 
At startup all output register bits of the VMOD-DOR are zero. This 
leads to a HIGH on all channels, when it is measured against a 1kOhm 
pull-up resistor connected with the 5V output of this module. The RT 
Action switches the level to LOW and back to HIGH. The pulse width 
corresponds to the rise- and fall-time (Fig.1) of this level and is not of 
importance within this measurement. At the beginning of the 
measurements the command DioChannelInit was applied in advance of 
the level setting. It turned out that this command had no effect. Its 
time consumption is mentioned in Fig. 1. 
 



 
Figure 1: Latency times for read, write and init commands on VMOD-DOR. 3xoff/on 
with DioWrite followed by DioInit and finally one DioWrite off/on. Times a. and b. = 
1.25µs, c. = 5.0 µs. Time c. consists of DioInit (3.75 µs) and DioWrite (1.25 µs). 
 
 
Note: The VMOD-I/O with its possible piggy-backs is designed for 
single process operation and not for multi-threading. The access to the 
board is protected by one single semaphore flag which is observed by 
the OS. In case of two or more different threads operating at the same 
time on this board, the required action (hi/lo, read/write etc.) is 
delayed.  
The thread-to-thread execution delay time for this module and this 
CPU setup was identified as 250±10µs for each thread. The response 
time of read/write actions on the board of approx. 1.25µs may be in 
this case neglected. 
 
Note: At this time, a stable, reliable and reproducible latency time 
measurement regarding FESA can not be done. This is due to probable 
changes on source code (Timing, FESA and possibly FPGA firmwares 
etc.), which are relevant in this framework, which is always on 
enhancement. 
E.g.: Measurements were undertaken to define the fastest response 
time from the occurring hardware trigger until the raising signal from 
the I/O module. This was evaluated being 560µs on one day and 



430µs on the next day (after recompilation). This significant change of 
more then 20 % should show that all timing measurements have to be 
undertaken frequently. The most probable reason for this behavior is 
text output on the front-end, but also changes on source code may 
have effects. 
 
As you would need to document all versions of every linked code, and 
in addition list up all running parallel processes on the used CPU, which 
obviously have also significant influence on the performance, these 
results presented here have to be interpreted as a direction and not as 
a final fact.  
 
HW-trigger to I/O reaction – Latency-time 
 
The complete reaction time starting from the HW-trigger (LTIM event) 
until the I/O signal is lowered is determined as 430µs (see Fig.2). This 
includes the complete FESA activity plus the hardware correlated 
influences. The priority settings on LynxOs up to 255 can not improve 
that value. The measurement was done after a fresh reboot without 
significant parallel users except LTIM Fesa class. 
 
 

 
Figure 2: Response time to a hardware trigger is 430µs plus CPU systematic delays. 
  



In any case of executed measurements typical delay fractions (approx. 
20µs steps) can be seen. This is supposed to be a scheduler 
characteristic and is originated by the OS-kernel and not by FESA. The 
average time frame for this delay distribution is 75µs. It can not be 
called a jitter as it is not randomly distributed.  
 
Also compiling the Fesa class in a separate RT thread using “make rt” 
and starting this executable with different priorities has no influence 
on the response time of 430µs.  
 
Influence of PRIO on two parallel processes 
 
After a fresh reboot of the CPU two equal processes were started with 
different PRIO settings. Process 1 was switching channel 1 on the DOR 
board, process 2 the channel2. As this module suffers from a strong 
crosstalk on the outputs, the results can be observed on one 
oszilloscope channel, only the pulse height is different, which is not 
essential for this timing measurement. 
Process 1 was always started first. 
 

No. Prio 
Process 1 

Prio 
 Process 2 

tmin [µs] 
Process 1 

tmax [µs] 
Process 2 

tmin [µs] 
Process 1 

tmax [µs] 
Process 2 

1 17 17 1026 1116 1252 1348 
2 50 17 588 684 1620 1900+ 
3 17 50 1620 1900+ 604 688 
4 100 50 596 688 1220 1352 
5 50 50 1004 1120 1248 1368 
6 100 100 1004 1152 1252 1392 
7 17 100 1640 1940 590 710 

Table 1: 2 Processes running at different PRIO settings. 
 
As a first obvious outcome one can see, that setting two parallel 
processes to the same priority (grayed lines in table 1) has no positive 
effect for both of them. They both run delayed compared to the 
maximum response time. The second one in addition is delayed by the 
DIO access (approx. 250µs). This could also be confirmed for three 
different processes at same priority. 
 
Setting a higher priority to one of two parallel processes has a 
significant influence on the response time. The one with higher priority 
is executed close to the shortest possible response time (at time of 
this measurement this was 560µs). The second process instead is 
furthermore delayed.  



Comparing line 2 and 4 of table 1 shows, that setting a higher priority 
(more than standard 17) to both processes, leads to a decrease of the 
response time for the lower priority process. It was found out, that the 
step size of the priority setting has no influence. That means that 
there is no visible difference between setting 100/50 or 100/99. The 
response times are equal in both cases like in line 4. 
 
A measurement with 3 parallel processes (Fig.3) shows the same 
results. The processes with higher priority than 17 were shifted to 
faster response times; the process with priority 17 instead was 
additionally delayed. That means, priority setting delays others 
processes significantly. 
 
 

 
Figure 3: Three parallel processes with priority settings 50/17/25. The second 
started process is the one at the most right (prio 17). 
 
 



Influence of gcc optimization flags 
 
The idea is to improve latency time by using the gcc optimization flags 
while compile time. There are the types -O2, -O3, and –Os which were 
tested with FESA. Setting the flag to the FESA-Equipment class only, 
had no effect. Compiling the complete FESA framework plus the 
equipment class decreased the latency time by 25%. The results are 
presented in Fig. 4, 5, and 6. The executable FESA classes were 
started with priority setting to 50. 
 
 

 
Figure 4: Measurement with Compile-Flag –O2 and priority setting 50. The shortest 
latency time is 350µs (without flag it was 430 µs). 
 
 
The latency time did not change on setting the flag –O3 instead of –O2 
as can be seen in Fig. 5. The flag –Os which is usallly used for size-
optimization did not reduce the size, but had the best effect as shown 
in Fig. 6 with a (best) latency time of 338µs. Nevertheless other 
secondary influences on stability of FESA were not investigated. Also 
the third-party libraries e.g. from the timing section were not compiled 
with –O flags. This test should be performed to gain probably another 
improvement. 



 
Figure 5: Measurement with Compile-Flag –O3 and priority setting 50. No difference 
to –O2 can be seen. 
 
 

 
Figure 6: Measurement with Compile-Flag –Os and priority setting 50. The shortest 
latency time is 338µs, the best value within the complete test measurements. 



 
Following Makefiles where changed for the mentioned optimization 
measurements: 
 
Framework: 

CMW 
CORE 
DATASTORE 
EXCEPTION 
INTERFACE 
LOGGING 
PERSISTENCY 
PLC 
RECORDER 
RT 
SECURITY 
SORTING 
SYNCHRONIZATION 
UTILITY 

 
FESA Equipment class: 

GENERATED CODE 
RT  



Addendum 
 
After reboot following processes were running, this could have 
influence on the scheduling and the timing-behavior. 
 

last pid:   117;  load averages:  0.01,  0.00,  0.00    
16:50:21       
47 threads:    1 running, 3 ready, 43 
waiting        
           
Memory: 254M total, 33M user, 10M kernel, 210M 
free       
           
           
PID USERNAME TID PRI TEXT STK DATA STATE TIME CPU COMMAND 

0 root 0 0 0K 0K 0K ready 3:24 0.00% nullpr 
0 root 8 100 0K 8K 0K wait 0:00 0.00% amd 

20 root 9 18 65K 52K 68K wait 0:00 0.00% unfsio 
0 root 2 100 0K 8K 0K wait 0:00 0.00% bsd_netisr 

63 root 37 17 1154K 48K 152K wait 0:00 0.00% sshd 
22 root 10 18 65K 52K 67K wait 0:00 0.00% unfsio 
24 root 11 18 65K 52K 67K wait 0:00 0.00% unfsio 
26 root 12 18 65K 56K 73K wait 0:00 0.00% unfsio 
35 root 28 25 4175K 56K 312K wait 0:00 0.00% LTIM_M 
83 root 18 25 4119K 56K 308K wait 0:00 0.00% proz1.ppc4 
33 root 27 33 248K 44K 104K wait 0:00 0.00% dtmrt_ls 
86 thoffman 46 17 386K 52K 175K wait 0:00 0.00% tcsh 
29 root 26 17 516K 44K 92K wait 0:00 0.00% bash 
80 root 36 17 516K 44K 94K wait 0:00 0.00% bash 

-83 root 41 17 4119K 44K 308K ready 0:00 0.00%  
28 root 25 17 154K 40K 55K wait 0:00 0.00% telnetd 
78 root 7 17 154K 40K 55K wait 0:00 0.00% telnetd 

-14 root 23 99 438K 44K 150K wait 0:00 0.00%  
87 thoffman 45 17 96K 36K 326K run 0:00 0.00% top 
14 root 22 100 438K 40K 150K wait 0:00 0.00% get_tgm_tim 

-83 root 40 17 4119K 36K 308K wait 0:00 0.00%  
107 root 20 19 255K 44K 60K wait 0:00 0.00% sysReporter 
79 root 17 17 15K 36K 10K wait 0:00 0.00% syncer 
0 root 4 17 0K 4K 0K wait 0:00 0.00% TX 

98 root 19 17 283K 40K 146K wait 0:00 0.00% xntpd 
31 root 15 17 155K 44K 61K wait 0:00 0.00% inetd 
0 root 1 17 0K 8K 0K ready 0:00 0.00% CALLOUT 

-35 root 34 25 4175K 40K 312K wait 0:00 0.00%  
-35 root 29 25 4175K 36K 312K wait 0:00 0.00%  
-35 root 31 25 4175K 36K 312K wait 0:00 0.00%  
-35 root 32 25 4175K 36K 312K wait 0:00 0.00%  
34 root 24 25 516K 44K 62K wait 0:00 0.00% sh 

-35 root 30 25 4175K 36K 312K wait 0:00 0.00%  
13 root 21 100 516K 44K 63K wait 0:00 0.00% sh 

-35 root 33 25 4175K 36K 312K wait 0:00 0.00%  
-83 root 42 25 4119K 36K 308K wait 0:00 0.00%  
-83 root 43 25 4119K 40K 308K wait 0:00 0.00%  
-83 root 44 19 4119K 36K 308K wait 0:00 0.00%  
117 root 16 19 68K 36K 23K wait 0:00 0.00% errlocal 
-35 root 35 19 4175K 36K 312K wait 0:00 0.00%  

0 root 13 18 0K 8K 0K wait 0:00 0.00% nfssync 
76 root 6 17 41K 36K 27K wait 0:00 0.00% login 
0 root 14 18 0K 8K 0K wait 0:00 0.00% nfsaio 

-83 root 38 17 4119K 36K 308K wait 0:00 0.00%  
-83 root 39 17 4119K 36K 308K wait 0:00 0.00%  

0 root 5 17 0K 4K 0K wait 0:00 0.00% RX 
1 root 3 16 28K 36K 11K wait 0:00 0.00% init 

 


