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1. Preface and Requirements 
 
The implementation of front end devices of any type such as PLCs, 
VME modules, CCD cameras and so on, into the CERN control 
system is not an easy task. As the number of devices at CERN is 
unpredictably high, the control group decided not to do this job in 
every case, but developed a framework in which every user of a 
device is able to implement it himself. This framework is called 
FESA, the Front End Software Architecture, and the principle and 
manner of working within this framework is described in this 
document from a user’s point of view. 
 
The main goal using this framework is to receive an executable 
program (device class), which is running on one or many user’s 
front-end CPUs (FEC) or PCs and which performs all of the required 
tasks, such as getting and setting data within an adequate time 
frame. FESA helps with all intermediate steps regarding the timing 
connection, deployment and instantiation of the class. Not provided 
within FESA is a final graphical user interface, but a flexible test 
environment to check all functions of the class. 
The advantages using this framework are manifold. The most 
important of them shall be listed here to motivate the new FESA 
user:  
 

• it provide for reuse of code, which saves plenty of developing 
time. This code is already debugged and tested. 

• the interfaces with the next upper level (middleware) are 
uniform and instantly accepted. 

• changes and debugging are easier to handle, by the user, by 
others, and also up to 10-15 years in the future. 

• the amount of programming (in byte and time) is exceedingly 
reduced due to automatic code generation.  

• CVS (Concurrent Versions System) based source code 
management for version control, safety, and multiple 
developers. 

• the growing FESA community provide for additional support, 
tips, and tricks 

 
The FESA framework has to be used for all new devices being added 
to the control system. In case of problems with FESA the experts 
from the FESA project team are willing to assist. Exceptions to this 
regulation have to be discussed with the respective people in the 
CO-group. As with any other way of implementing devices into a 
control system, there are some requirements, recommendations, 
and restrictions: 
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1.1. User 
 

• The user is a “device expert”. That is, he knows what he 
wants to do with his device and how it works.  

• The user has basic knowledge of the CERN timing system and 
of the machine and event names he will need to trigger his 
equipment. 

• A hardware driver is required. 
• The work with FESA requires a basic knowledge of C++.  
• The user needs some time and patience to learn FESA.  
• He should carefully read all existing information, which 

already exists on the FESA project website: 
 

http://cern.ch/project-fesa/
 
The “FESA Essentials” [1] especially give a compact overview of 
FESA. Its contents will be partially repeated in this document. 
  

1.2. Infrastructure 
 

• FESA is not available from outside the CERN intranet. 
• The graphical development tools of FESA are realized in JAVA, 

therefore Windows, Linux, and Mac operating systems are 
supported. The actual Java Runtime Environment must be 
installed on your system.  

• For the source code development, an appropriate Linux 
Account is required. 

• The supported FECs are: Motorola, PPC, Intel 
• FESA device classes can run on Linux and LynxOS. 

 
 
 
This document does not describe every button and functionality, 
only those which were found to be important. Play around with all 
the icons and menu entries to find all the features. The FESA 
development is permanently continued (2.9 at the moment), so 
parts of this document may no longer be valid. Please report 
mistakes to the FESA team. 
The words formatted in italics shall point to its FESA origin. 
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2. The FESA Project Website 

2.1. Main Page 
 
Open the FESA homepage at http://cern.ch/project-fesa
 

 
 
Fig. 1: FESA main page  

 
The three links labeled “Development Corner Version X.X” lead to 
the collection of Java tools required for FESA. For new projects the 
latest version should be chosen. It is recommended that users 
update their compilations with the latest version, as older versions 
(latest – 3) are not supported anymore. 
 
The link named “Bug Report” offers the possibility of sending an 
email to the FESA team in case of problems with FESA. 
Recommendations and comments are also accepted. 
 
Following the link “Features and Bug Fixes” gives information about 
all active bug reports and upcoming features. The JIRA 
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documentation provides the possibility to track a (your) bug in a 
very convenient and transparent way.  
 
The access to the link “Project Corner” is permitted only to the FESA 
developers. 
 

2.2. Development Corner 
 

 
 
Fig. 2: Development Corner 
 
 

This page provides all necessary tools and available documentation 
to create FESA device classes. The use and function of these 
development tools are described in detail within Chapter 3.  
The links “Design-Tool”, “Instantiation-Tool”, “Navigation-Tool”, and 
“Deployment-Tool” are all combined in the link “Shell” for easy 
access.  
The “Data Management Tool” is used to delete instances from a FEC 
and to switch to another software version of your device class on 
the FEC. 
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The “Logging Tool” is not completely functional and should not be 
used. 
 
The “CVS” (Concurrent Versions System) link gives read access to 
the complete FESA device class repository. Here you are able to 
study source code and to get an overview about the different 
versions of device classes. 
The “API Documentation” is a helpful Doxygen based reference for 
FESA users in the programming phase.  
 
All available documentation on FESA is listed in the left sidebar.  
 

3. Principle and Technical Terms 
 

 
Fig. 3: Schematic overview of the FESA development workflow 
 

The flow of a FESA class development starts with the design. Herein 
you specify the inputs and outputs of data, as well as the actions 
and timing. The conclusive and valid design forms the foundation of 
the C++ source code generation, which is performed automatically. 
The programming of the event-and-user driven actions is the next 
step and has to be done by the user. The source code is delivered to 
the CVS repository and the compiled executable and its associated 
files are deployed to the relevant FECs. Finally all required instances 
of the device class are generated and the class is ready to be tested 
using the “Navigation-Tool”. 

 99 



FFEESSAA  PPRRIIMMEERR  
 

3.1. Design 
 
The design phase is the first step on the way to creating a FESA 
class. To create an equipment model (FESA class) the “Design-Tool” 
is used, which is available on the “Development Corner” as a stand-
alone Java tool or as part of the “Shell”.  
 

 
Fig. 4: Screenshot of the Design-Tool within the “Shell” 

 
To start a new design, click “New” in the menu or press the 
accordant icon. You may then select a template with preconfigured 
settings, e.g. the full template. 

This tree lists all available design parts, which 
are described in detail below. It is not 
necessary to use them all; the usage depends 
on the type of the class. To create a valid 
design, inter-dependencies between different 
design parts have to be solved. If not, the 
“Design-Tool” gives warnings and signals, e.g. 
red fonts at missing inputs, instantaneous at 
design time. 
In general, if the design is valid, a  appears 
in the bottom right corner. In fault state the 
warning symbol  shows up. 
 

Tree 1: Equipment model 
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After creating and editing the design, it has to be stored in the FESA 
class database by selecting “Store” in the menu. At the first save, a 
significant name has to be entered. FESA handles the user inputs in 
XML files. It is possible to store and open these files separately.  
While designing you may use the right mouse button to add or 
replace features. Some entries are restricted by naming 
conventions; the correct pattern is then displayed in the state 
window. 
 

3.1.1. Ownership 
 
The creator and the editor(s) are entered here with their typical 
account name. This information is required for access control of the 
design.  
 

3.1.2. Standard-class / Plc-class 
 
The design branch standard-class is used for most equipment 
designs. In case you design a FESA class for PLC devices you may 
change the standard-class entry to plc-class. There are already 
typical PLC options available (see Chapter 3.7). 

3.1.3. Equipment-Links 
 
Usually FESA classes are developed as stand-alone classes. If it is 
necessary to link separate FESA classes, the “Equipment Links” 
have to be defined. This can be done to reduce complexity of a class 
or to connect to classes which are deployed on different FECs.  
This special task provides a separate manual with examples. This 
can be found in the “Development Notes”, the link is reached via 
the “Development Corner” sidebar. 
 
http://project-fesa.web.cern.ch/project-fesa/development/notes.htm
 

3.1.4. Std-Services 
 
PLC  
 
Inheriting the standard PLC interfacing service brings several pieces 
of information into your design. These pieces of information 
configure the communication-protocol which allows the FEC at one 
end, and the PLC at the other, to maintain a consistent state of the 
device they each see. This std-service is referenced by a PLC-
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RTAction. If no PLC-related activities are foreseen, this service 
should not be set to plc. 
 
GM 
 
Selecting the standard GM interfacing service allows you to add old-
style General Module properties into your design. This allows legacy 
C applications to access your equipment through RPC. When you 
decide to inherit from the GM interface service, RPC-handling code 
will automatically be integrated into your equipment class. This 
option has to be set in case a gm-property is defined. 
 

3.1.5. Interface 
 
The interface branch of the design tree defines all get-and-set 
functions providing data exchange from and to the outside (clients 
from the control-room or middle-tier software layer). Designing the 
interface means listing so-called properties that can be remotely 
accessed through the controls-middleware. You should devote great 
care to defining your equipment class interface as this can be 
viewed as the binding-agreement between your class and its 
external users. When you create a new version of an equipment 
class it is your responsibility to ensure backward compatibility with 
Java applications that access its interface.  
For performance and usability reasons the interface should be 
simple and short. This can be accomplished by combining similar 
value-items to one property.  
 

3.1.5.1. Properties 
 
A set of predefined properties is available. These are: 
 
alarm-events-property   
The alarm-events-property (since 2.9) is designed to be completely 
managed automatically. It collects all information from the defined 
alarm-fields and handles the alarm as specified to operate with the 
LASER system. The attached items to the alarm-events-property, 
such as name-, state-, stamp-, prefix- and suffix-item provide dim 
fields, which have to be filled with the maximum amount of alarm-
fields specified in the device-data. In subscription on-change (at 
application or middleware level), only alarm-fields which have a 
different state from the previous call will be reported to the client. If 
nothing has changed, nothing will be sent.  

 
alarm-details-property   
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The alarm-details-property is designed to report dynamic details for 
a specific alarm. Those details are optional and can be defined 
individually on each alarm-field by adding a standard-key and/or a 
user-key. The client, who calls this property, specifies the alarm-
field name on which he wants details, after which the key values of 
all keys defined for this particular alarm field will be reported. 
 

std-setting-property 
std-acquisition-property 
std-reset-property 
std-status-property 
 
Note:  
“std” is an abbreviation for “standard”, not to be mixed up with the 
US medical abbreviation for “sexually transmitted disease”.  
 
All the std-properties conform to the standards and guidelines of the 
applications group [2] and have to be used if the std-property sense 
matches with your concept. Editing of these properties is very 
restricted. All other properties are treated as expert properties and 
have to be adapted separately. 
 

std-copypl-property 
 
This property provides the possibility to copy PLS settings from one 
to another line. The value-item in this specific property is the line 
name (e.g. PILOT1) 
 

property 
 
This is the most common used property, or expert property, where 
you define its use on your own. Dependent on your requirements 
and your C++ coding concept, you have to select between simple 
and complex functionality. These two settings are described on the 
following pages. 
 

gm-property 
 
As GM is the forerunner model for FESA, this property provides the 
interface for FESA projects with GM based applications (GUIs). 
 
 
With your property entry you have to decide whether you wish to 
perform a default get/set action, which reads and writes on a 
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specified data field (see Chapter 3.1.7) without additional C++ 
coding (use simple), or defining a complex property, which then is 
linked to a custom Server Action (see Chapter 3.1.8).  
 
A property can hold one or several so called “items” such as:  
 
value_item:  
complex property, can be of all data types (see Chapter 9) 
 
filter_item:  
used for data shaping, averaging and other calculations 
 
data-field-ref-item:  
standard data field (in: data, device data, field) 
 
data-field-role-item:  
like the ref-item, but used to give an alias name 
 
state-field-ref-item:  
refers to a state-field and custom-types state-enum 
 
state-field-role-item: 
like ref-item but used to give an as alias name 
 
data-field-bit-ref-item:  
refers to a single bit in a custom-types bit-enum 
 
error_status_item and 
error_message_item: 
created and used by the std-status-property 
 

Multiplexing Criterion 
 
With any defined property a multiplexing-criterion has to be set to 
either NONE, which means this type of get or set function for all 
value-items is valid for all possible timing-domains (accelerators) or 
to USER, to read from and write to the settings of an exclusive 
timing-domain. If in a property a data-field-ref-item was set, then 
this multiplexing-criterion is already known from the data-field 
settings. For value-items in complex properties, a combo-box 
provides the selection between USER and NONE. 
 
  

Simple  
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In most cases defining a simple property is absolutely sufficient. 
Each individual item maps on an existing field (see Chapter 3.1.7). 
This characteristic makes it possible to rely on a default Server 
Action (see Chapter 3.1.8) instead of having to supply specific code 
for serving the property. In addition a connection to a custom 
Server Action is possible via a server-action-ref definition.  

Complex 
 
A property is said to be 'complex' when the individual value-item do 
not simply map on internal fields (it may be still possible via a data-
field-ref-item). A complex property may also define a 'filter' which 
specifies the treatment performed by a custom server-action that 
serves the property. It is foreseen that the regular value-item may 
be limited by range settings using min and max.  
 

3.1.6. Custom-Types 
 
You may rely on a set of custom-defined constants, enumerated 
types and 16/32-bits bit-patterns in your design. These custom-
types are built on top of basic 'underlying types' (e.g. short, long). 
The controls-middleware has no knowledge of the custom-types and 
interprets them as their underlying type. Therefore, it is your 
responsibility either (1) to ensure that such custom-types are used 
only internally by your equipment, or (2) to make sure that any 
public property that would refer to the custom-types is restricted to 
those applications that have knowledge of how to reinterpret the 
underlying-types used for transmission.  
 
Examples: 
 
(1) Define a constant, name it e.g. RESOLUTION, enter a value e.g. 
0.005 and select the type const float. Use this RESOLUTION within 
your source code for calculations.  

 
output = measValue * RESOLUTION; 
 

The middleware is not interested in this constant. But on change of 
RESOLUTION you can update its value easily within the design. 
 
(2) Define a bit-enum-32bits, name it e.g. CONFIG_REGISTER, 
open the sub-branch and name all bits separately. In addition you 
can set startup states to each bit selecting true or false. 
Then define a data field (see Chapter 3.1.7) named configReg and 
create a reference using custom-type-ref CONFIG_REGISTER. Now 
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a self-defined property can perform get-and-set actions to this field 
configReg, which is based on a custom type. 
 

3.1.7. Data 
 
The data branch is the reloading point of all handled data and the 
heart of the device model. It provides the device data, the global 
data and the domain data branches to define and to allocate the 
placeholders for all possible values, results, text strings etc. 
required for the all-embracing interaction between the user and the 
hardware. 
Main purposes of this data field principle are to represent the 
complete device data model and to buffer user inputs, which are not 
processed immediately. This method provides some safety as a user 
typically can not disturb a critical sequence of processes or 
RTActions by a direct hardware access. 
 

3.1.7.1. Device-Data 
 
These fields store settings, acquisitions, parameters and variables of 
all device-instances and beam users to provide a snapshot of the 
current state of the device's hardware counterpart, or to hold 
settings ready which have to be sent to the hardware on a specific 
trigger. 
 

 
Fig. 5: Visualization of the device data field functionality and its access techniques 

 
Figure 5 describes how the data fields are accessed. The detailed 
explanation of Server Action and RTAction follows in the Chapter 
3.1.8. 

 1166 



FFEESSAA  PPRRIIMMEERR  
 

A set of different predefined field types is available:  
 
The hw-adrs fields provide the possibility to define hardware 
relevant fields such as lun (logical unit number), ch (channel), or 
type, which can be set later within the instantiation part. Working 
on a PLC-Class this field is used to define a plc-hostname. 
 
The fault-fields hold boolean values. These tell if fault-states are 
active or not. From within the C++ code, or a real-time or Server 
Action, you raise a fault by setting the corresponding fault-field to 
'true'. You suppress the fault state by 'resetting' the field, which 
means setting its value to 'false'. Fault-fields are used to manage 
states on the front-end part, e.g. stop a server-action on a faulty 
state of a register. Working on a PLC-Class, there are already three 
predefined fault-fields which cannot be changed.  
 
The alarm-field is similar to the fault-field with a slightly different 
character as an alarm may be raised also on informative states such 
as “scintillator moved in the beam”, which is not a fault, but really 
important to know. For this, the static alarm message (conform with 
LASER API) may be characterized through a series of optional 
standard or user-keys. The standard key uses the alarm-field’s 
name, which is being added either as prefix (in front of the alarm-
message) or as suffix (behind the alarm-message) to provide this 
name information. The user-key can deliver more information 
placed in its user-key name field. In addition, for an expert rating 
the severity degree such as ERROR, WARNING, and OK, can be 
defined. For several sub-items of the alarm-events-property the 
amount of the alarm-fields has to be entered into their dim fields. 
(see also 3.8). 
 
The state-field is bound to a state-enum variable defined within 
the custom-types branch. These predefined states couple strings 
such as ON, OFF etc. with numbers to be used in C++ coding. 
 
The interrupt-field is required when operating with the event type 
logical-event-group. In the instantiation part this field is coupled 
with an LTIM/CTIM event. 
 
The field is the most commonly used data field to get-and-set data 
from the user to the hardware. Out of a set of different data types, 
such as 1-dim-arrays, 2-dim-arrays or scalar types, the adequate 
type may be selected. 
 

3.1.7.2. Global-Data 
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This type of data is available all over your FESA class and valid for 
all instances. Global-data fields cannot be used in a multiplexing 
context.  
 

3.1.7.3. 

3.1.8.1. 

Domain-Data 
 
In the domain-data branch, so-called telegram-group-fields may 
be defined. These fields are filled with definitions given in the 
Instantiation-Tool. The sense behind the domain-data fields is to 
provide specific tgm-data (telegram data within the timing-event) 
within your RTAction source code to be used for target-specific 
actions at runtime, for example a low intensity beam line (fixed to 
low intensity) for which a transformer always has to be set to a 
more sensible gain-range or to obtain the particle type for 
evaluation purposes. 
 
 
 

3.1.8. Actions 
 
Actions are the basic work-units of the equipment software. They 
come in two flavors: the real-time actions are triggered by central-
timing events and interrupts. The Server Actions implement user 
request-handling. Right from the design stage, the equipment 
specialist has to list all the action-classes that can be executed at 
any time by user intervention or by triggered events. 
The FESA equipment class, your project, can be described as a 
server. When a client, for example the controls middleware, 
requests a get-or-set action, this request is accepted by your server 
and is packaged as an event and transmitted to the Server Action. 
This is similar to all kind of actions described here. All actions 
provide in their source code the execute(Event *) method, which is 
then executed. This is the method which has to be filled with source 
code by the user.  
The different types of actions and their access directions are shown 
in Figure 6. 
 

Server Action 
 
The Default Server Action performs a get and/or set operation 
without user defined source code. This action need not be specified 
under the design branch actions, but in the interface part, where a 
“simple” property-item may be defined with the get/set default-
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action. The corresponding data field may then be set or read out 
automatically on user request.  See also Figure 6. 
 
The Server Action is more powerful when implemented as user-
specified code such as text output, calculations, etc. The code frame 
(a .cpp and .h file) is generated by the Linux command Fesa 
Synchronize and is stored in the SERVER directory. The name of this 
file equals the name of the defined Server Action in the design 
branch “actions”. 
A Server Action is primarily timing independent, of course there are 
ways to use external or user triggers to execute the Server Action.  
 
 

 
Fig. 6: Differences between Default, Custom and RTAction 

 

3.1.8.2. RTAction 
 
The RTAction executes user-defined code. On a standard event 
driven electronic or data acquisition system, the RTAction is the part 
where actions of any type, such as read on register, calculate data, 
initialize hardware, or move actuator, are performed in time. A 
started RTAction has maximum priority, so new incoming triggers 
are delayed until the RTAction has finished. Also, user-executed 
Server Actions are delayed when an RTAction is running.  
 

DeviceCollection 
 
In Figure 5 within the Chapter 3.1.7.1 the so called DeviceCollection 
was already mentioned. As more than one instance (e.g. 2, 3, or 
more modules of the same type or other certain grouping criteria) 
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might be present in your equipment, and all provide perhaps 
different settings or deliver different results, they have to be treated 
separately. For this, the class deviceCollection provides its size and 
instance number for the RTAction. The code of an RTAction is 
enclosed in a device-loop, which leads to an access of every 
instance per event (see Figure 5, 3.1.7.1). 
 

MultiplexingContext 
 
The multiplexed usage of the different accelerators requires some 
special handling of your C++ code. In case the data of your 
acquisition is dependant on special lines (SFTPRO, EASTA, etc.), and 
you have entered one or more valid target-timing-domains in your 
design (LHC, LEI, PSB etc.), you have to provide the 
MultiplexingContext. For every get-and-set function you have to add 
this context as a parameter.  
 
Example: 

 
MultiplexingContext* pContext ; 
pContext  =  pEv->getMultiplexingContext(); 

 READ:     
float hv_value = pDevice->hvValue.get(pContext); 

 
OR WRITE: 
          pDevice->hvValue.set(hv_value, pContext); 
 
It is recommended to assign always the pContext as a parameter in 
the source code, even if not used. In case of later switching to 
multiplexed usage, no rework of the code is necessary.  
The principle of this MultiplexingContext provides a big help for the 
developer as no more time has to be spent on handling the timing. 
 
 

3.1.8.3. PLC-RT-Action 
 
The PLC-RT-Action is a derivate of the RTAction, but is already 
equipped with special PLC procedures, such as  

 
GetAcquisition 
GetConfiguration 
SetPLCCommandFields 
SetPLCConfigurationFields  
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These actions reference the std-services PLC and are triggered and 
scheduled like the RTActions. The prepared source code files are 
stored in the folder GENERATED CODE in your Linux development 
path. 
 
 

3.1.9. Events 
 
The equipment is usually synchronized with the overall accelerator 
timing by receiving deterministic events. For each class, the 
equipment-specialist has to define a list of logical events by giving 
those names within the scope of the equipment-class. The binding 
of logical events with your RTActions is done in the scheduling 
branch. The final specification of these logical events with 
accelerator-, timer-, or hardware interrupt setting is done later 
within the Instantiation-Tool.  
 

3.1.9.1. Logical Event 
 
The logical events belong to the explicit event types. Explicit means 
the RTAction with its corresponding trigger will be set at design 
time. This setting is valid for all instances, independent of how 
many there are. 
 

Timer 
 
Choosing timer as a logical event provides an internal clock which 
generates events in infinite constant time-steps (constant 
frequency). This leads to triggering your action independent of the 
general accelerator timing. The step size (in ms) has to be defined 
in the timing-mapping branch of the Instantiation-Tool. This feature 
is used for example, in getting frequent updates of a temperature or 
pressure measurement where accelerator timing is not an issue. 
 

Mtg  
 
Choosing mtg (master timing generator) as a logical event defines it 
as being dependent on a specific accelerator event (CTIM), which 
has to be specified in the timing-mapping of the Instantiation-Tool. 
Using the mtg logical event requires a hardware connection of your 
FEC with the global timing network. In addition, a timing-domain 
has to be specified within the target-timing-domain branch of the 
design tree. 
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Custom-event-source-ref 
 
This setting references a custom-event-source, which is explained in 
3.1.9.3. 
 

User 
 
User event sources are not instantiated by the framework. An 
operator can trigger an RTAction using a Server Action. This type of 
triggering is timing-independent and also useful for sending 
information as a payload to the hardware.  
 
//Not available anymore 
 
Example FESA Class TestUserEvent: The class Interface * pClassIntf 
provides the method fireUserEvent(evt,payload). This method has 
to be called in the Server Action, which shall trigger the RTAction. 
See an example in the Chapter 6.3. 
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3.1.9.2. Logical-Event-Group 
 
The purpose of this event type is to associate one or more mtg 
events to one or several instances, and then to execute one 
dedicated RTAction.  
The logical-event-groups belong to the implicit event types. Implicit 
means the final RTAction trigger will not be set at design time, but 
within the Instantiation-Tool. For trigger-setting, every instance 
then provides one or more interrupt fields. These can be filled with 
CTIM/LTIM triggers provided by the logical-event-group selection in 
the timing-mapping branch of the Instantiation-Tool. The required 
settings for the design and instantiation phase of this operation are 
shown in Figure 7. 
 

 
 
Fig. 7: Exemplary structure of a logical-event-group definition 

 
These exemplary settings are leading to the trigger sequence shown 
in Figure 8. The RTAction logEventGrpAction is executed 3 times per 
cycle. It provides useful data at trigger #200 for both instances and 
useful data on trigger #209 only for instance 2. Later in the cycle 
on trigger #707, useful data for instance 1 is provided. 
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The explanation of the Instantiation-Tool is done in the Chapter 3.4. 

1 300

time

fie
ld

Ev #200

Ev #209

Ev #707

Instance 1Instance 2

Instance 1
&

Instance 2  
 
Fig. 8: Exemplary trigger sequence resulting from the settings in Figure 7. Remark: The 
ramping sketch and the trigger positions are fictitious 

 
 

3.1.9.3. Custom Event Source 
 
A logical event can be linked to a so called custom-event-source. 
Custom event-sources are not instantiated by the framework. It is 
your responsibility to write C++ code that creates the instances 
from within the <classname>RT::specificInit() method of your 
equipment class (in the file <classname>Realtime.cpp). When you 
define custom-event-sources in your design document, some C++ 
code templates will be automatically generated in the RT package, 
one for each event-source class. Implementing a custom event-
source consists of filling its wait() method. This method 
manufactures an RTEvent object along which you may pass a string 
payload. Such a payload can then be accessed from within your RT 
actions.  
 

3.1.10. Scheduling 
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Within the scheduling branch of the design tree the association 
between the logical event (see Events) and your RTAction in so 
called scheduling-units will be assembled.  
 
 

3.1.10.1. Scheduling-Units 
 
Most common scheduling-units consist of a reference to an RTAction 
or PLC-RTAction and a reference to a trigger, already defined in the 
events branch. This RTAction is executed within the main thread for 
the complete device-collection. If there are more than one of these 
scheduling-units triggered at the same time or are overlapping, 
those are performed sequentially. 

Selection-criterion 
 
To be more selective in triggering RTActions the selection-criterion 
provides the possibility to filter on different device-collections and 
their instances which fulfill the same filter criteria. These can be 
equal field values (hw-field, base-field, and data-field), which can 
be set explicit to a final value or be implicit (see selection-rule) if a 
device-group-implicit-event-ref with an interrupt-field is already 
defined. Using the selection-criterion this way executes the 
RTAction sequentially for all the instances, fulfilling the criterion. 
For the handling of many parallel running RTAction-threads the 
selection-criterion is used in combination with the concurrency-
layer. Therefore the per-device-group option of the concurrent flag 
has to be set to YES. For all instances of all device-collections 
matching the selection-criterion, the referenced RTAction is 
executed in parallel. 

 

Selection-rule 
 
implicit: 
In case there is a selection condition attached to this scheduling-
unit, this will be automatically augmented so as to make sure that 
the devices sorted by the condition also share the same interrupt-
field. If there is no device-selector condition explicitly defined for 
this unit, the framework's action factory will create as many 
instances of the action as there are homogeneous groups of devices 
with respect to the interrupt-field's value.  
 
concurrent: 
See 3.1.10.2 Concurrency layer 
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Anticipated 
 
This is a kind of flag which provokes a pretrigger-like operation. 
After setting anticipated to a scheduling-unit, the RTAction is 
executed one cycle earlier.  
Typically these anticipated RTActions are used when a hardware 
device has to be initialized before the real measurement trigger 
occurs. This can be useful for a slow working or slow communicating 
device. Setting the flag only makes sense in a multiplexing context 
using mtg-events or mtg-group-events. The mtg-event must not 
carry any payload. 
 
Apart from the case of the PS, the mtg-event carries a payload 
which dynamically identifies whether the multiplexing-context it 
relates to belongs to the current or to the next cycle of the 
telegram. In this situation such a flag is of no use.  
 

3.1.10.2. Concurrency-Layer 
 
In case the user wants to execute the RTAction in parallel threads, a 
concurrency-layer can be defined. Each layer then requires a 
scheduling-unit with reference to the RTAction, a reference to a 
trigger plus the concurrent flag with the layer name. This leads to 
parallel execution of instances of the RTAction. In case another 
instance of the RTAction shall be executed, a new scheduling-unit 
and a new concurrency layer have to be added. This is only 
reasonable for a few instances. 
 
 

3.1.11. Target-Timing-Domains 
 
 

Your equipment class may be deployed on one or several machines 
of the AB complex. Each machine is usually associated with a 
specific timing domain, while transfer-lines that connect different 
machines are usually associated to two domains. A device instance 
must belong to only one timing-domain, while you may instantiate 
different devices on different timing domains.  
The instantiation schema is derived from the information you 
provide here, i.e. the possible timing-domain into which you will be 
able to instantiate your class will be restricted to the list you provide 
here.  
If the device class does not require a connection to a timing-
domain, select None. Available timing-domains are: 
 

 2266 



FFEESSAA  PPRRIIMMEERR  
 

• CPS 
• PSB 
• ADE 
• LEI 
• SPS 
• SCT 
• LHC 
• None 
 
 

3.2. Linux Utilities 
 
When your Linux environment variables are properly defined, FESA 
provides you with a set of scripts to automatically create and 
populate a C++ development directory, to deliver your equipment 
for operation, and to deploy and instantiate it on front-end 
computers. The complete description of all available Linux FESA 
commands can be found at: 
 
http://project-fesa.web.cern.ch/project-fesa/development/fesaLinuxUtilities.htm  
 
 

3.2.1. The FESA Commands 
 
The most important commands are listed here: 
 
In case a new device class is finished and 
stored in the database, use the command: 
 
 “Fesa Setup <devicename> <version> scratch”. 

  
This creates the complete directory 
structure of your new class within your 
Linux work folder and also creates the 
source code. 

Tree 2: Standard directory structure 

 
If you have later on applied changes on your device class (in the 
equipment model), you have to perform a: 
 
 “Fesa Synchronize <devicename> <version>” 
 
followed by a “make”, as FESA has to generate new source code out 
of it, which has to be recompiled. 
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In case you have applied changes within your instances, e.g. setting 
new initial values or adding new instances, you have to perform a:  
 
“Fesa Instantiate <devicename> <version> <FEC-name> <directory>”.  
 
If you want to store your binary on the frond-end and your source 
code in the CVS for publication or as backup, you have to perform : 
 
“Fesa Deliver <devicename> <version> <CPU-type>”. 
 
In case you just want to store your source code in the CVS 
repository, the commit command may be used: 
 
“Fesa Commit <devicename> <version>”. 
 
 

3.2.2. Retrofit 
 
Retrofit means updating your FESA class from an older to a newer 
version of FESA. Therefore a special Perl-script is available which 
does all conversions automatically. For this procedure please follow 
the retrofit instructions at: 
 
http://project-fesa.web.cern.ch/project-fesa/development/retrofitNotes.htm
 
 

3.3. Deployment 
 
In case you have stored your design and created the necessary 
source code, the class itself has to be transported to one or several 
FECs.  
 
Note: Additional information on this subject can be found at [4].  
 
For this the FESA Development-Corner website provides the link to 
the stand-alone Deployment-Tool or to the Shell.  
 
After opening the Deployment-Tool and pressing retrieve, a pop-up 
window requests the selection of a connected FEC to which the 
FESA class has to be deployed. The graphical tree shows the already 
installed FESA classes on this FEC.  
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Fig. 9: Screenshot of the Deployment-Tool (Shell version) 

 
A right-mouse-click on the FEC-fesa-configuration branch offers the 
add function, which has to be selected. From all available FESA 
classes you have to select the class to be deployed.  
Afterwards a new entry can be found in the topmost position of the 
deployment tree.  
 
As can be seen in Figure 9, the following parameters have to be set: 

3.3.1. Version 
 
Just select the version number of the class which has to be 
deployed. 

3.3.2. Deployment Option 
 
The deployment options have influence on the performance of the 
actual class and also on the whole FEC with all started classes. 
 
single-process: 
Server and realtime activities will run as two different threads in 
one single process. This is the most common option and is 
recommended. 
 
separate-server-split: 
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Two separate server and RT processes are realized, which can 
communicate via a shared memory segment. 
 
shared-server-split: 
This feature also splits server activity and real-time activity into two 
processes, relying on a shared memory segment for 
communication, but in this case the server-part is merged with 
other FESA classes within a so called shared-server-process. 
 
shared-server-unsplit: 
In addition to the shared-server-split, this option also includes the 
RT part into the shared-server-process. This method should be 
avoided as only one RT task can be handled within this process.  
 
shared-server-interface: 
This realizes a class within a shared-server-process which has no RT 
part.  
 
separate-server-interface: 
Only one single process for Server Action without RT part is 
realized. 

3.3.3. Startup 
 
Selecting manual means starting the executable manually. This can 
be done with a simple ssh <FECNAME> command in a Linux 
terminal window. Change to the TEST directory of your class and 
enter ./<executablename>.  
Selecting automatic leads to an automatic startup of the executable 
upon reboot of the FEC. The startup order of several FESA classes 
on the FEC is given by the order in the deployment tree. 

3.4. Instantiation 
 
The FESA development shell and the Development-Corner website 
also provide an Instantiation-Tool. After the design and the 
deployment phase of the FESA class, the instantiation is essential to 
define the amount and type of different devices, regardless of a 
timing domain. PERSISTENT and FINAL data can be defined here for 
single instances, or in case of global-data, for all instances. The 
main function of this tool is to couple the events from the design 
phase with the actual CTIM events or with an internal timer. 
Defining a timing-simulation helps testing FESA classes without 
connection to the real timing system. The timing-domains of the 
class, version, and FEC are set when this file is loaded from or 
saved to the database and need not be declared in this tree. 
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Fig. 10: Example of a fictitious instantiation-unit provided by the FESA shell 

3.4.1. Multiplexing 
 
If a device-data field in the Design-Tool was set to 
USER_PARTIALLY as multiplexing-criterion, the multiplexing branch 
is available to define the depth of the device-collection. This feature 
is used for optimization of the data-field depths as not all data 
values for all 24 USERS are required. 
 

3.4.2. Timing-Mapping 
All logical events defined in the design part have to be coupled here 
with either a dedicated timing event to be selected from combo-
boxes (CTIM) or with a timer period setting (timer). 
 

3.4.2.1. 

3.4.2.2. 

CTIM 
A CTIM is a string in the style of ‘timingDomain’:'name':'code'. The 
user has to specify the domain dependent trigger signal to start his 
action. 
 

Timer 
An infinite loop of trigger signals is generated by this internal timer. 
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Specify the trigger period in ms. This period equals the delay time 
between each trigger signal. It must be a positive integer number 
(max. is 2.147e9). Setting the value to 0 suppresses triggering. 
 
 

3.4.3. Timing-Simulation 
 
The timing simulation is a standard service of the FESA 
infrastructure.  
Note: additional information on the timing simulation can be found 
at [3]. On activation, it replaces the timing-hardware and all the 
software interfaces required to synchronize the deterministic 
process control (e.g. FESA RT-action) with an internal timing 
system.  
The main objective is to support testing the FESA application 
without the real timing. This can be useful in case of missing timing-
hardware, in shutdown periods, or while debugging. Also specialties 
such as evaluation of telegram-data or handling of logical-event-
groups are provided. 
The real timing and the timing-simulation may be defined in 
parallel, as one can easily switch between both timings by toggling 
the timing-simulation on or off. They cannot operate at the same 
time in parallel.  
Note that the FESA Navigator (an auxiliary test environment also 
available within the FESA shell) works as well in the simulation 
mode. 
 
The simulation is defined independently for each timing-domain 
predefined in the class design. Available timing-domains may be 
added to the simulation by a right-mouse-click on the timing-
simulation entry. 
 
Attributes of the timing-simulation are:  
 
enable: 
 
enable / disable simulation mode. This switches between simulation 
(ON) and real timing (OFF). 
 
basic-period-length: 
 
The length of the basic period in milli-seconds (default is 1200ms). 
It is a global parameter of the timing simulation. 
 
repetition: 
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This defines how many cycles of the global simulation will be 
executed. 
The global simulation can be activated once (repetition=1), several 
times (repetition=n), or repeated indefinitely (repetition=-1). 
 
If one or more timing-domains were defined within the Design-Tool, 
they may be configured after adding them to the tree as follows: 
 

3.4.3.1. <Domainname>-Domain  
 
A <domainname>-domain, for example a CPS-domain, has to be 
defined and added as already described. This branch consists of two 
sub-branches called super-cycle and events-sequence. Per timing-
domain there is exactly one super-cycle available, but many events-
sequences if required. 
 

Super-cycle 
 
A super-cycle consists of one or many cycles. The executing order 
of the cycles equals the top-down order within the tree. The primary 
start of the super-cycle can be delayed by setting a time in milli-
seconds to the attribute shift-delay. 
To provide the best flexibility in the timing-simulation and to be as 
close as possible to the real timing, every cycle within a super-cycle 
is attached to an events-sequence which also is very flexible, as it 
offers several event types. 
 
Cycle 
 
The cycle is part of a super-cycle. The main attributes to configure 
the cycle are: 
 
User 
 
A typical telegram-group-user, such as SFTPRO, EASTA etc. has to 
be selected to provide information for multiplexing the PPM-data as 
in the real timing. Select one among the whole set of available 
users for the timing-domain concerned.   
 
Basic-period-multiple: 
 
This sets the length of the cycle, expressed in numbers of basic-
periods. The duration of the basic-period-length, expressed in ms, is 
specified in the timing-simulation node, e.g. setting a 5 leads to 
5x1200ms=6000ms or 6s cycle-length. 
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Events-sequence-name-ref 
 
This refers to the event-sequence which is linked to the cycle. The 
cycle does not produce the trigger events; it only defines the time-
frame being filled with an events-sequence.  
Note: If you want to define a 'ZERO' cycle, you have to create and 
refer to an empty event-sequence.  
 
 
If you are using telegram-data and you need to extract additional 
information such as particle type (PARTY) or destination (DEST), a 
telegram-data branch can be added to the cycle. 
 

Events-sequence  
 
As already mentioned in the super-cycle description, the cycle itself 
has to be linked to an events-sequence. In case no events are 
required, as for the ZERO cycle, you have to create an empty 
events-sequence.  
 
One sequence can be referred by several cycles if those require the 
same event types. Conversely, a set of sequences can be declared 
but not used. This allows you to increase the number of test 
configurations. 
 
In the real timing mode, you define a concrete CTIM or LTIM event 
for each logical event (explicit of implicit) you declared in the 
Design-Tool. The specific characteristics of each event (name and 
delay in particular) are programmed à priori and registered in a 
database. 
In the simulation mode, you have to define each event 
characteristic yourself, as well as register this information within the 
Instantiation-Tool directly. This allows multiple adjustments and 
simplifies upstream application developments. 
 
The events-sequence has to be named. This name is used as the 
events-sequence-name-ref as a cycle attribute. 
 
For the design of the simulated timing behavior four event types are 
available:  
 
event:  
 
It simulates a simple CTIM or LTIM event linked with an explicit 
logical-event for which mtg is specified in the design. At least one 
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logical-event using mtg has to be designed. If not, the timing-
simulation makes no sense.  
The event has to be linked to a logical-event by selecting the name 
from the combo-box. In addition the delay time in milli-seconds has 
to be added. This delay is the time between cycle start and 
execution of the trigger. 
Note: Setting the delay to a negative value means that it is works 
as a pretrigger.  
 
event-burst:  
 
Choosing event-burst leads not only to one but to (n) trigger signals 
within the given period and number of occurrences. The event burst 
simulates an LTIM pulse-train linked with an explicit logical-
event/mtg specified in the design. The first event of this train is 
triggered after the fixed delay from the cycle start. Then (n-1) 
events are generated in regular intervals corresponding to the 
specified period. 
Note: Setting the delay to a negative value means that it works as 
a pretrigger. 
 
event-group:  
 
The event-group event type has to be chosen if an implicit logical-
event-group using mtg was designed and shall be simulated. It 
works like the event described above, except in addition, a sub-
name to differentiate between each events is required (sub-name 
format: [timing-domain]-[index], example: LEI-01, LEI-02, PSB-01, 
CPS-01, etc.).  
If timing-simulation is switched on, the contents of the interrupt-
fields (required for using the logical-event-group functionality) of 
the instances is changed from a CTIM event-name to this sub-name 
as a placeholder. 
The event is triggered after the fixed delay time to be entered in 
milli-seconds, beginning from the cycle’s start. 
 
event-group-burst: 
 
The event-group-burst works like the event-burst. This event type 
has to be linked with an implicit logical-event-group/mtg specified 
in the design, and also sub-names, such as those used for the 
event-groups have to be defined. 
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3.4.4. Instances 
 
 
There are three different types of instances, which can be added or 
removed easily. The sub-branches of the instances are dependent 
on the defined device-data fields in the design part. Whenever a 
device data field is defined as FINAL or PERSISTENT, an entry in 
each instance for this field is created and has to be populated. This 
is also valid for the global-data, but within a different branch. 
In addition all types of instances provide branches with non-editable 
information, such as isMUX and timingDomain. 
 
 

3.4.4.1. 

3.4.4.2. 

3.4.4.3. 

3.4.4.4. 

<Domainname>-Device-Instance 
 
This type of instance is used in a multiplexed context within a 
specific timing-domain (<DOMAIN> replaced by i.e. CPS, LEI etc.). 
<Domain>-device-instances are available, when target-timing-
domains are specified in the Design-Tool. By default a set of 
instances is created within the instantiation-unit. If some of these 
instances are not required, they can be deleted or replace by other 
types of instances.  
 

None-<Domainname>-Device-Instance 
 
This type of instance is not used in a multiplexed context, but within 
a timing-domain.  
 

NONE-Device-Instance 
 
In case no global timing at all is required, this type of instance may 
be chosen.  
 

<Domainname>-Domain-Data 
 
This branch is dedicated to populate the telegram-group-fields 
specified in the Design-Tool. A right-mouse-click on the 
instantiation-unit branch offers all available <Domain>-domain-data 
entries. Of course this only applies when one or more target-timing-
domains are defined at design time. 
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3.4.5. Global-Data 
 
If a global-data field was defined as FINAL or PERSISTENT, it may 
be set in this branch. 
 
 
 

3.5. Navigation-Tool 
 
After having completed all steps beginning from the design until the 
final instantiation phase, the FESA class is ready to be tested. On 
the FEC the binary is started manually or automatically while the 
boot process. To get in contact with the executed binary the 
Navigation-Tool can be used. This is found within the Shell or as 
standalone tool on the Development-Corner website.  
The Navigation-Tool provides access to all defined properties. 
Dependent on the specified get-or-set-action while the design phase 
the buttons get and/or set appear in the navigator window.  
 
Working with the Navigation-Tool requires following steps: 
 
1. Select a FEC in the Device Selection window. 
2. Chose a beam target in the Cycle Selection window. 
3. Select a property in the Property Selection window. 
 
After this the navigation window will pop-up. It offers several 
different viewers such as 2D-plot (see Fig. 11), tables, or text 
logger and already useful data acquisition features such as printing, 
data storage, zooming, etc. 
 
The get-and-set actions can be performed manually by pressing the 
equivalent buttons or by subscribing to the class which leads to 
automatic and frequent viewer updates. 
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Fig. 11: Navigation-Tool for testing purposes 

 
 
 

3.6. Data Management / Source Code Generation 
 
This paragraph is not essential for working with FESA. It provides 
condensed background information on the data processing 
principals for the interested user. 
 
All the FESA GUIs are written in Java. Therefore it is almost 
platform independent. The contents of the GUI, edited by the user 
in this obvious tree structure, are stored in XML files. XML files are 
human and processor readable ASCII files, also platform 
independent, with a fixed structure which allows parsing for a valid 
consistency of this file. 
The files are stored on the one hand in so called CLOBS (character 
large objects) as reference on the other hand the data is shredded 
and stored in relational database tables. This provides not only 
storage but also data access for other services such as the Alarm 
Monitor.  
Additionally they can be exported to regular XML files on the hard 
disk. 
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By executing Linux Perl scripts (Linux commands, e.g. Fesa Setup…) 
the stored XML files (e.g. from the design tree) are sent to an XSLT 
processor, which operates similar to a classical compiler such as 
gcc. This XSLT processor transforms the contents of the XML files to 
valid C++ source code with help of predefined templates. 
 
This data flow is organized by the FESA Data Management System 
(DMS). Its dependencies to the FESA packages are shown in Figure 
12. 
 
 
 

FESA DMSFESA DMS

FESA GUIFESA GUI’’ss
FESA scriptsFESA scripts

ControlsControls
ConfigurationConfiguration

DatabaseDatabase

JavaJava
DirectoryDirectory
ServiceService

Save/restore Save/restore 
XMLXML.. List.List.

Restore XMLRestore XML.. List.List.

Propagate some information Propagate some information 
needed by CMW.needed by CMW.

Access data from Access data from 
XML previously torn XML previously torn 
apart.apart.

FESA FESA AlarmAlarm
MonitorMonitor

 
Fig. 12: FESA Data Management System (DMS) dependencies. 
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3.7. PLC-Interface 
 
As FESA is dedicated to support easy equipment implementation 
into the control system the use of a specific PLC interface within the 
FESA Design-Tool is foreseen to fully integrate the large amount of 
PLC devices.  
The usage of the PLC integration is well described in the documents 
“PLC integration for FESA 2.9” [5] and “PLC configuration for FESA 
2.9” [6] available at the Development Notes link on the FESA 
Development -Corner website. 
 
 

 
 
Fig. 13: Scheme of typical PLC installations. 
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The concept is to create first a dedicated PLC class (FPLC) which 
describes the PLC device and its processes. Already at startup of a 
new equipment-class-design a template for a PLC class is offered. 
All necessary properties and data fields are implemented there. This 
FPLC can be run separately for testing purposes and offers already 
the features “status”, “settings”, “acquisition” and “configuration”.  
In a second step after creating the FPLCs a special FESA application 
class (FAPP) should be designed to bundle many FPLCs with same 
functionality or due to other reasonable causes. This FAPP handles 
the FPLCs as a master class. It offers the possibility to evaluate the 
acquired data and to operate various equipment types (from 
different PLCs eventually) from the operator’s point of view. The 
connection between FAPP and the FPLC is organized by the design 
option equipment-links (see 3.1.3). The std-service PLC has to be 
set for the FAPP. Both, the FPLC and the FAPP are usual FESA 
classes which have to be deployed to a FEC which handles the PLC 
devices. 
To configure the PLC hardware for proper FESA access an online 
tool may be used to generate the device memory mapping for the 
PLC side programming (only the interface part, not the data 
acquisition). This tool is called “IEPLC Configuration” and is found 
at: 
 

http://ieplc-configweb.web.cern.ch/IEPLC-ConfigWeb/v2.9
 
Usually for Siemens PLCs the software environment Step 7 (PL7 and 
Unity for Schneider PLCs) is used. In addition to the operational 
software which is developed within Step 7 by the user, the output 
code of the IEPLC source code has to be added to reserve the 
memory space on the PLC device for FESA access. 
A typical PLC setup is presented in Figure 13. The FESA classes, 
FPLC and FAPP, are deployed to a FEC and several instances are 
built. Access of the PLC is possible via Ethernet and the IEPLC 
specific configuration. The devices which have to be controlled are 
either connected directly to a PLC unit or accessed via the fieldbus, 
e.g. FIPIO or Profibus. 
 

3.7.1. PLC Requirements 
 
In addition to the already mentioned PLC descriptions [5] and [6] 
some important issues should also be listed here. 
 
One has to take care of the vertical order of the properties within a 
FPLC class design which is important for the correct mapping with 
the PLC device. This is also necessary for the vertical order of 
instances within the Instantiation-Tool.  
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Within the PLC class the USER event which may be used for manual 
triggering of the RTAction is created automatically. No additional 
source code has to be implemented. 
 
The PLC-Expert can prepare a CSV list, a simple ASCII text file, with 
the correct order and parameters for the PLC mapping. This text file 
is later on processed by a script called “generatePlcClass.pl” which 
generates a valid design xml-file to be imported to the Design-Tool.  
A typical CSV-file consists of following entries: 
 
PLC-property-type: CFG, CMD and AQN 
PLC-property-name: any valid name 
IEPLC-data-types: see Chapter 9 
Dimension: n x type or array size 
 
CSV-Example: 
 
CFG, cfg_1_r, REAL,  1  
CMD, cmd_1_ba, BYTE,  3 
AQN, acq_1_ca, CHAR, 1024 
AQN, acq_2_ca, CHAR, 1024 
… 
 
 
Note: When deploying a FPLC class it is important to know that if 
this class is going to be used as a stand-alone class without a 
connected FAPP the deployment-option single-process in the 
Deployment-Tool should be set. In the other case the option 
separate-server-interface should be selected.  
 
 
 
 

3.8. Alarm-Interface 
 
FESA provides a front-end layer to the underlying LASER alarm-
system. The usage, requirements, and constraints of the Alarm 
handling within FESA are well described in the document “Alarm 
interface for FESA 2.9” [7] which can be found in the Development 
Notes link of the Development-Corner website. 
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4. Example FESA Class 
 
To demonstrate, how FESA works it is helpful to process all required 
steps on the basis of a real equipment device.  
 
Note: This example shows only one of infinite possible ways of 
fabricating a FESA class. It can always be done in a different way. 
Not every feature of FESA is used here. This example is meant to be 
a first approach. 
 
The class can be found in the FESA class repository Version 2.9 
entitled as TransferlineTrafo. The source code is stored under the 
same name in the CVS repository. 
 

4.1. The Module TRIC 
 
The real VME device named “TRIC” [8] (TRansformer Integrated 
Card) has to be implemented into the control-system using FESA. 
The device is a CERN-made VME module to integrate transformer 
currents. The connected transformer is installed in the transfer-line 
between the PSB and the PS. The measurement principle is as 
follows: 
 

1. Receive a control event to initialize the module. 
2. Receive a start event to trigger the measurement procedure. 
 

The TRIC-output delivers finally the intensity of the proton beam in 
a cycle-by-cycle mode. 
 
Of course this is not that simple such as listed above. The module 
provides a large set of properties which have to be set correctly and 
the required hardware driver already exists as it was used for 
developing and testing the module. The driver was prepared with 
the DriverGen [9] framework. The address mapping of all registers 
is organized within the driver. To get in contact with the hardware 
via C++ a device-handle had to be implemented. This piece of 
source code is added in the addendum. The VME crate also hosts a 
RIO3 PPC4 processor and a TG8 timing module. 
 
Note: Hardware tests should be done in a stand-alone situation 
outside of FESA. 
 
The measurement procedure shown in Fig.13 requires the setting of 
different time gates. This is a typical user-input (set). 
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The gate t2 (beam signal is measured) as an example starts t1µs 
(length of t1) after the acquisition-trigger and lasts t2µs. 
 
 

 
Fig. 14: TRIC-measurement procedure. All time steps t1-t11 and the calibration voltage 
(Ucal) have to be set. t1 - Measurement gate delay (from trigger), t2 - Measurement gate 
length, t3 - Measurement offset delay, t4 - Calibration gate delay (from the end of  
measurement gate), t5 - Calibration pulse length, t6 – Measurement offset gate length 
(the same as t2), t7 - Calibration pulse delay (from the end of  measurement gate), t8 - 
Calibration gate length, t9 - Calibration offset delay, t10 - Calibration offset gate length 
(the same as t8), t11 - Test auto-run timer period, Ucal - High Voltage value 
 

 
Figure 14 shows that after a trigger signal has occurred the beam 
intensity and afterwards the offset signal without beam is measured 
(t1-t6). The same is done with an internal calibration pulse and its 
offset (t8-t10).  
After this procedure all data is stored in registers which have to be 
read out, calculated, and given out by your FESA class. 
 
Module specialties such as the internal calibration, offset correction, 
and HV settings are omitted, as they are not required for learning 
FESA. 
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4.2. The Example Design 
 
A design is not a fixed procedural method. You may switch from the 
interface part to the data part via actions back to interface and so 
on, as you whish and as it is required. 
 
The relevant steps for a valid design may look like as follows: 

 
After opening a new design 
within the shell or Design-Tool, 
the tree should look like this and 
has to be populated now. 
Defining the ownership and the 
editor is simple but mandatory 
for security reasons. 
We have to think about the 
properties which have to be 
accessed by an operator to get 
or set data. The final readout of 
acquired data is such a property.  
 
 
 

Tree 3: All required interfaces 

 
 
 
 
Therefore we add a simple 
property DataReadout and define 
several data-field-ref-items for all 
necessary data fields. 
As we can only read the acquired 
data the default-action get is 
defined. 
 

Tree 4: The property DataReadout 
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Control (read/write) and status (read only) registers are used very 
often. The operator can change the behavior of the hardware by 
switching bits of a control register. In addition he can read back his 

settings. The status register may be 
used for observation of a running 
process, e.g. a bit is set to 1, when a 
measurement has finished. In our 
design it looks like shown in Tree 5. 
 
To provide a read-and-write access 
to the control register the default-
actions get-and-set are chosen. The 
status register is limited to a read 
access. 

Tree 5: Control and status register 

 
As already mentioned, the 
behavior of the measurement 
procedure is described by time 
settings. We have to take care 
of that operator inputs in this 
case are done in seconds or 
micro-seconds, which can be 
float values. The hardware 
register instead accepts only 
long words. A conversion of 
these values is done in the 
C++ code while reading and 
writing to the hardware 
(RTAction).  
To accept more sophisticated 
variables the property type 
complex is used (see Tree 6). 
Doing this requires also 
specifying the multiplexing-
criterion (here NONE) and the 
variable type (float).  
Additional information can be 
added such as a short 
description or the used 
dimension (unit) and order of 
magnitude. Note that these 
settings are only for 
documentation. 

        Tree 6: Complex properties. 
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For this project we have to use some constant values which are 
necessary for calculations such as from a time setting to a long 
word. As the board is synchronized with an onboard quartz oscillator 
with a frequency of 48 MHz, the resulting step size for time 
conversions is 20.083333ns. This value is used for all calculations 
and can be provided by defining it in the branch custom-types as a 
constant. See Tree 7, CLOCK_CYCLE_TIME_NS. 

For constant variables 
it is recommended to 
use custom-types as 
they can be changed 
easily for all instances 
in one step, if required.  
Very helpful is the use 
of the bit-enum-xxbits 
types, as every bit of a 
word can be defined by 
name and later touched 
separately in the GUI 
or used in the source 
code. 

Tree 7: List of custom-types. 
 
 
The heart of the design is 
the data branch where all 
possible data fields have to 
be defined. Whenever a 
value has to be delivered to 
or received from either the 
operator or the hardware, it 
has to be defined as a data 
field. In addition, the 
multiplexing-criterion, the 
data type, and its 
persistency have to be 
defined. A part of the data 
field list is shown in Tree 8. 
Note that the custom-type 
STATE_REG (Tree 7) is 
referenced by the field 
stateReg (Tree 8) as the 
status register is not just a 
long or float but a bit-
enum. 

Tree 8: List of data fields. 
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In Tree 9 the actions, events, scheduling, and target-timing-
domains are listed. Already in Tree 6 the server-actions such as 
getTimeSetting were referenced. In the actions branch they are 
declared. Two rt-actions are defined, one to initialize and prepare 
the hardware module at an earlier event (controlRTAction), and 
another one to execute the measurement procedure and the 
intensity calculation (acqRTAction). As the acquired data has to be 
delivered to the operator, the property DataReadout is notified after 
the RTAction is processed.  
This measurement is multiplexed 
which means that beam to 
diverse targets may have 
different settings per cycle and 
user.  
To receive accelerator-dependant 
triggers the mtg as an event-
source was chosen. The logical-
event-group was selected, to be 
prepared, if several transformers 
(instances) have to be triggered 
on the same event executing the 
same RTAction. Therefore 
interrupt-fields are required which 
are defined in the scheduling 
branch as a device-group-
implicit-event-ref.  
Finally the target-timing-domain 
has to be selected. This can be 
more than one. The final timing-
domain is selected within the 
Instantiation-Tool per instance.  
If the design is valid, it can be 
saved and the code production 
started using the Linux utilities. 
A design can be changed any 
time, for example adding the 
error and alarm handling if 
required. Of course the source 
code is updated, without 
destroying already written code.  

Tree 9: Actions, events, scheduling and 
target-timing-domain settings. 
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4.3. Source Code Production and Coding 
 
Once the design is valid and stored, you have to switch to the Linux 
world. Create a new directory for your FESA classes and change to 
this directory.  
Type  “Fesa Setup MyClassName 0 scratch” and press enter. The 
“Fesa” script will install a new directory structure and creates source 
code. The most relevant source code rudiment for own coding is 
found in the RT and SERVER subdirectories. The .cpp files of the 
actions have the same name defined in the design.   
 
Note: The complete programming part cannot be explained here. 
Only the approach is documented. In the HowTo part of this 
document you will find examples for useful methods.  
 
To read from and write to the hardware usually memspace has to 
be declared. The complete register mapping of a VME module has to 
be known. If more than one module of the same type is installed in 
a crate, each has to be identified correctly (LUN, CH). Usually a 
driver is required, where all these mappings are organized. This 
driver is compiled with FESA by including (#include) it. In addition, 
a device handler accessing the correct module is required. The 
sample code for such a device handler for the TRIC module is added 
in the addendum. 
 

4.3.1. Server Action 
 
To work with the module all settings have to be entered by an 
operator. These are in our example timing settings and high voltage 
settings. Therefore some Server Actions were designed and 
generated, which have to be filled with code. The sense behind is, 
that the data is copied from the user input to the data field or vice 
versa by pressing a get or set in the Navigator (GUI). 
 
Example of a set action (copy from input to data field): 
 
float timer_period = this->data.testTimerPeriod.get(); 
        pWorkingDevice->testTimerPeriodSet.set(timer_period, pContext); 
  
cout << "Set TimerPeriod: " << pWorkingDevice>testTimerPeriodSet.get(pContext) << endl; 

 
 
As all values are multiplexed, the MultiplexingContext (here 
pContext) has to be added. In case you switch back to non-
multiplexed mode for your property (e.g. testTimerPeriod) this 
additional variable does not disturb. 
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A Server Action is usually (it can) not connected to the timing and 
can be executed anytime.  
 

4.3.2. RT Action 
 
Our example uses two RTActions: One for updating all settings 
before the real measurement procedure is started and one to read 
the acquired data and to calculate the beam intensity. The 
measurement is not started by an RTAction. Therefore a hardware 
trigger input on the module is used, which executes the automatic 
onboard procedure. The RTAction only checks at the beginning, if 
the measurement has finished before making the readout. 
 
 
Example of a read action from the TRIC hardware: 
 
measResLo = ReadTricRegister(handle,MEAS_LO_I_RES_ID); 
measResHi = ReadTricRegister(handle,MEAS_HI_I_RES_ID); 
       
  pDev->measLowIntResult.set(measResLo, pContext); 
       pDev->measHighIntResult.set(measResHi, pContext); 

 
 
The function ReadTricRegister (see source code in the addendum) 
writes a register contents from the module to the variable 
measResLo. After this, it is written to the corresponding data field in 
the device collection. 
 
 
Example of a write action to the TRIC hardware: 
 
// Set Measurement Gate Delay (from Trigger to MeasGate) 
     
value = (int)fabs((pDev>measGateDelaySet.get(pContext))/CLOCK_CYCLE_TIME_NS); 
 
cout <<  "MeasGateDelay : reg[" <<MEAS_GATE_DEL_ID << "]  =  "<< value << endl; 
 
WriteTricRegister(handle,MEAS_GATE_DEL_ID, value); 

 
 
Of interest can be the handling and use of bit-enum types. In the 
example one dedicated bit of the config register has to be cleared 
(set to 0) to update a setting. If the bit is 1, then it has to be 
cleared. If it is 0, it has to be switched to 1 and back to 0 to 
perform the required update.  
For this following code may be used: 
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Example of a bit-wise toggle of the config register of the TRIC 
module: 
 
// toggle bit D8 of config register 
 
CONFIG_REG::CONFIG_REG flag = (CONFIG_REG::CONFIG_REG)pDev->configReg.get(pContext); 
         
 if (flag & CONFIG_REG::MeasFlagClear){ 
 (long)  flag &= ~CONFIG_REG::MeasFlagClear; 
   WriteTricRegister(handle, CONFIG_REG_ID,(int)flag); 
 
cout << "******************************************* Cleared Bit D8: " << flag << 
endl; 
   
 } 
  else { 
 (long)  flag |= CONFIG_REG::MeasFlagClear;  
   WriteTricRegister(handle, CONFIG_REG_ID, (int)flag); 
   long)  flag &= ~CONFIG_REG::MeasFlagClear; 
   WriteTricRegister(handle, CONFIG_REG_ID, (int)flag); 
       
cout << "***************************Toggle bit D8 from 0 to 1 to 0 : " << flag << 
endl; 
 } 

 
 
 

4.3.3. The SpecificInit Class 
 
In our case the file is called TransferlineTrafoRealtime.cpp and it is 
also stored in the RT directory. This file is important as it hosts the 
specificInit class. This class may be used to perform only one time 
specific source code, for example writing a default value to the 
module, to assure that it does not start with wrong data. 
 
Example of a specificInit usage: 
 
TransferlineTrafoRT::specificInit(int argc, char ** argv) { 
 
vector<TransferlineTrafoDevice*>* pDevCol=TransferlineTrafoDevice::getDeviceCollection(); 
 for (unsigned int i=0; i < pDevCol->size(); i++){ 
   TransferlineTrafoDevice * pDev = (*pDevCol)[i]; 
  
   HANDLE handle = devHandle::getDevHandle(pDev->name.get());  
    
   int config_value = 0x193; //Default startup value of Config register 
 
   WriteTricRegister(handle,CONFIG_REG_ID, config_value); 
    
cout<< hex << " TransferlineTrafoRT::specificInit is called, setting ControlRegister! "<< 
config_value << endl;   
 } 
} 
 

 
To perform the WriteTricRegister function, the device handler has to 
be defined here as well. 
 
Anytime while being in the coding phase a compilation may be 
performed by typing “make”. If you are in a subfolder (e.g. RT) only 
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these files are compiled. If you switch to the main folder of your 
version (v0), you are able to compile the whole class.  
To continue with the FESA class you have to perform different Linux 
commands, such as “Synchronize + make” in case you have also 
made changes to the design or “Commit” to update the CVS 
repository or “Deliver” to prepare the binaries being deployed to a 
FEC. Please read also [10].  
 

4.4. Deployment of the Example Class 
 
To prepare the designated FEC for the use of the FESA class the 
Deployment-Tool has to be started. Select “Retrieve” and select 
from the FEC. The appearing tree shows all already to this FEC 
deployed classes. A right-mouse-click on the FEC-fesa-configuration 
branch allows adding a new class. As shown in Figure 15 this is 
already done for the FEC named dpsbbdi2. 
 

 
 
Fig. 15: Deployment-Tool with installed TransferlineTrafo device class 

 
As deployment option the “single-process” was chosen as this is 
sufficient for the TransferlineTrafo class. The startup type was set to 
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“manual” due to the actual development status of this class which is 
not used in permanent operation at this time. Press store when you 
have finished all settings. Now you can switch to the Linux and 
enter the TEST directory of the class and execute “make”.  
 

4.5. Instantiation of the Example Class 
 
Within the Instantiation-
Tool the final settings 
have to be entered. Load 
first the FESA class by 
selecting “Retrieve”. The 
amount and type of 
instances with all timing 
settings (event, domain, 
etc.) and startup values 
for PERSISTENT and 
FINAL data has to be 
defined. New instances 
are added by doing a 
right-mouse-click on the 
instantiation-unit branch. 
Press store when you 
have finished all settings. 
 
The last step is to switch 
to Linux into the TEST 
directory and perform 
the Fesa Instantiate 
command. This command 
must be executed every 
time changes were made 
to the instantiation file.  
Login on the FEC, e.g. 

ree 10: Instantiation-Tool. 

ssh dpsbbdi2, switch to 
the TEST directory and 
execute the binary 
manually. 
 

 
T

 5533 



FFEESSAA  PPRRIIMMEERR  
 

 

4.6. Testing of the Example Class 
 
To connect to the running binary, the Navigation-Tool has to be 
opened. This can be done directly from the shell where the Tric 
class is already available.  

Fig. 16: Navigation-Tool showing all read-out properties (read-only) 

Fig. 17: Navigation-Tool showing all timing settings with read-and-write access 
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5. Files in Project 

 is installed locally in your Linux 
nvironment, a directory-tree containing a set of source code files is 

irectory is named like the FESA class. 
elow this the class contents is placed in a folder 

ted automatically are not foreseen to be 
dited except the RT and Server Action files. The RT, SERVER and 

.1. Common 

sed to store user-created source code, i.e. own 
lasses and functions. If these self-created files shall be linked to 

.2. CVS 

 not of interest. 

.3. GENERATED_CODE 

nerated files, mainly .cpp and .h 
les. Most of the definitions and settings made in the Design-Tool 

ontains the class <class-name>GlobalStore with declarations for 
l-data in the Design-Tool. 

 

 
Whenever a FESA class
e
created.  
 
The top-d
B
labeled with the version number. In this folder 
(here v0) you will find also the main Makefile for 
the whole class. In every directory a CVS folder 
appears which is necessary for the CVS 
archiving procedure. Its data is of no use for the 
FESA class itself 
 
Usually all the files crea
e
TEST folder are containing a so called Make.specific file, which is 
used to add custom .cpp or .h-files or to add alternative include 
directories. These Make.specific settings are also interpreted as 
flags beneath the Makefile by the make command. 
 

5
 
This folder can be u
c
your FESA class, the adequate names and paths have to be added 
into the Make.specific file as already mentioned. 
 

5
 
This folder is
 

5
 
This folder contains the most ge
fi
are realized here in class declarations and definitions. 
 
<class-name>GlobalStore.h 
C
all data fields defined in globa
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<class-name>Device.cpp 
The fault-fields of the class are processed here; it provides a helper 

nction for computing standard status values. 

fined in the device-
ata are declared here. 

is routine includes the <class-name>-
omainStore.h file. 

e DomainStore-class. All fields defined in the 
omain-data, such as telegram-group-fields are declared here. 

ured 
ere and the ServerActionFactory is instantiated. 

ated to properties 
nd server-actions. 

ent configuration, instantiation of the 
TActionFactory. 

r the count/config variables related to RTActions 
nd events-sources, and for std-services. 

 class.  

tion.h 
 can be used to study 

oding of data transactions from the device to the data class and 

clarations. 

fu
 
<class-name>Device.h 
This file contains the device-class. All fields de
d
 
<class-name>DomainStore.cpp 
Usually not used. Th
D
 
<class-name>DomainStore.h 
This file contains th
d
 
<class-name>EquipmentDefaultInterface.cpp 
Interface handling, all properties and Server Actions are config
h
 
<class-name>EquipmentDefaultInterface.h 
Declaration-file for the count/config variables rel
a
 
<class-name>EquipmentDefaultRealtime.cpp 
RTAction and ev
R
 
<class-name>EquipmentDefaultRealtime.h 
Declaration-file fo
a
 
<class-name>EventSourceFactory.cpp 
Definition of the createCustomEventSource
 
<class-name>EventSourceFactory.h 
Definition of the EventSourceFactpry class. 
 
<class-name>GetSetDefaultServerAc
All default actions are realized here. This
c
vice versa. 
 
<class-name>TypeDefinition.cpp 
Some rda de
 
<class-name>TypeDefinition.h 
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Definitions of all data classes, especially for the custom-types. For 
num definitions the namespaces are declared here.  

 

cpp 

 

e Constructor and Destructor of the <class-name>RT 
lass. Most important is the method specificInit, in which initial 

.e. open sockets or hardware handles), 

n. 

face.cpp 
onstructor and Destructor of the <class-

ame>Interace class. Most important is the method specificInit, in 
be run once (i.e. open sockets or 

e
 
<class-name>ServerActionFactory.cpp 
ServerActionFactory definition 
 
<class-name>ServerActionFactory.h 
ServerActionFactory declaration
 
<class-name>RealtimeActionFactory.
RTActionFactory definition 
 
<class-name>RealtimeActionFactory.h 
RTActionFactory declaration
 
FesaCompilationInfo.cpp 
Version information 
 

5.4. RT 
 
<class-name>Realtime.cpp 
Contains th
c
functions can be run once (i
before the RT actions are executed. 
 
<class-name>Realtime.h 
The <class-name>RT class declaratio
 

5.5. SERVER 
 
<class-name>Inter
Contains the C
n
which initial functions can 
hardware handles), before Server Actions are executed. 
This can be also done in a separate custom initializing Server Action 
with the advantage, that a user can start this action manually. 
 
<class-name>Interface.h 
The <class-name>Interface class declaration. 
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5.6. TEST 

DeviceData.xml 
tores settings made within the instantiation unit. 

 case data fields are defined as PERSISTENT, all the values, also 

andles the deployment options set within the deployment unit 
parate-server-split etc. 

. Howto….. 

.1. Use the FAQ 

nt-Corner website a link to the FAQ pages is 
stalled. On this page some complex issues are explained, 

ow can I compile and link my custom hardware library for test 
purposes? 

 
 configure an operational FEC to link equipment-classes 

against a specific hardware library? 
 

 FEC to start equipment-classes 
automatically upon reboot? 

 
 e arguments to a FESA executable? 

ll I 
define a simple or a complex property? 

 
 a group of tightly-

coupled classes relying on equipment-links? 
 

 ? 

tom-event-source? 

 
<class-name>
S
 
<class-name>PersistentData.xml 
In
for all 24 users, are stored here.  
Note: To clean these values, this file may be deleted any time. 
 
deploy<class-name>.cpp  
H
such as single-process or se
 
 

6
 

6
 
On the FESA Developme
in
exemplified with code examples. Following subjects are treated 
there: 
 

 H

How can I 

How can I configure an operational 

How can I pass command-lin
 

 I want to implement a property with a custom server action. Sha

How do I setup the local directory structure for 

Why my custom-event source does not work 
 

 How can I generate timing-context from my cus
 

 Does FESA puts any restriction on the use of the std library? 
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 How can I clean up a FESA class-version? 

 
 How can I force a FESA version from the FEC's makefile? 

p in the 
Navigator or applications can't see them. 

 
http:/ development/FAQ.htm

 
 The device instances I've just created don't show-u

/project-fesa.web.cern.ch/project-fesa/
 
 

6.2. Use BitEnum 

bits custom types is sometimes helpful, if 
pecial bits have to be named and accessed. They are declared in a 

.3. Trigger an RTAction on User request  

 <TrigIncrementCounter.h> 
 <TestUserEventDevice.h> 

h> 

entCounter(const string& name, 
onConfig& serverActCfg) : 

ce, 

et( pContext ); 

 
Using bit-enum-16Bits/32
s
separate namespace to prevent mismatch with other bit-enums. It 
may happen easily that two bit-enums use the same name for a bit 
such as ON, OFF, ERROR, etc. so this way of different namespaces 
was chosen. A short example of how to use it is given in Chapter 
4.3.2. 
 

6
 
from TestUserEvent Class Server Action 
 
 
#include
#include
#include <TestUserEventGlobalStore.
 
#include "TestUserEventInterface.h" 
 
 
ing namespace TestUserEvent; us

 
TrigIncrementCounter::TrigIncrem
stractServerAction::ServerActiAb

 ServerAction<TestUserEventGlobalStore, TestUserEventDevi
TrigIncrementCounter_DataType >(name, serverActCfg){} 
 
void TrigIncrementCounter::execute(RequestEvent * pEv){ 

 MultiplexingContext* pContext ;  
 pContext = pEv->getMultiplexingContext(); 
 
 // to access an array or array2D field: 

// Type* pLocalVar= pWorkingDevice->field.g 
 // to access a scalr field: 
 // Type localVar = pWorkingDevice->field.get( pContext ); 
 
 TestUserEventInterface * pClassIntf =  
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  dynamic_cast<TestUserEventInterface 

UserEvent evt = UserTrigIncCounter; 

   string payload; 
d.get() == CounterID::COUNTER_1) 

e::CALIBRATION << " " << frequency << 

Store->startCalib.set(true); 

pClassIntf->fireUserEvent(evt, payload);  // no 

6.4. Create a DeviceCollection  

If you are in need to access a DeviceCollection in a part where it is 

SpecificInit: 

ctor<TransferlineTrafoDevice*>*pDevCol=TransferlineTrafoDevice::getDevice

igned int i=0; i < pDevCol->size(); i++){ 

dle = devHandle::getDevHandle(pDev->name.get()); 

*>(AbstractEquipmentInterface::getEqpIntfFromClassName("TestUserEvent
"));  
 // compile-time check  
 
  
     if (data.counterI
          payload = "0"; 
     else if (data.counterId.get() == CounterID::COUNTER_2) 
          payload = "1"; 
 
 int frequency = (int)data.frequency.get(); //

// int count = (int)data.count.get(); 
// ostringstream os; 
// os << UserTrigActionTyp
" " << count; 
// pGlobal
 
 
multiplexing-criterion is inherit 
 
} 

 

 

not provided, e.g. in the specificInit function of the <classname> 
Realtime.cpp file then you may operate like in the given example 
(extract of example in 4.3.3): 

 
ve
Collection(); 
 for (uns
   TransferlineTrafoDevice * pDev = (*pDevCol)[i]; 
  
  HANDLE han
  … 
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8. Glossary 
 

A.  
Actions: Design branch, specify RTAction and PLC-RTAction for triggered, 
event driven actions or Server Action for timing independent get/set 
operations. 

B.  
Branch: sub-group or part of the design tree. 

C.  
Concurrency-Layer: Scheduling option to execute several instances of an 
RTAction in parallel. 
 
Concurrent: Flag within a scheduling-unit to use the concurrency-layer 
 
CTIM: Central Timing Event, distributed timing all over the accelerator 
complex 
 
CSV: Comma separated value, an ASCII list of values ordered in columns, 
separated by commas or semicolons. 
 
CVS: Concurrent Versions System, a version control and backup system 
for large software developments 
 

D.  
Deployment: To deploy a FESA class means preparing the FEC and 
copying the class to it. 
 
Deployment-Tool: A Java application provided on the Development 
Corner website as stand-alone tool. It is also included in the “Shell” on the 
same website. 
 
Design: The user must describe his new equipment interface, internal 
structures and real-time behavior. This process is called “design” using the 
Design-Tool. 
 
Design-Tool: A Java application provided on the Development Corner 
website as stand-alone tool. It is also included in the “Shell” on the same 
website. 
 
Developer: in most cases the FESA user, but also possible the FESA 
developer, who takes care of the FESA itself. See User or Equipment-
Specialist. 
 
Device: The software abstraction of an underlying hardware device. The 
primary role of a FESA equipment class is to ensure that the hardware 
device on one hand, and its software counterpart (device) on the other 
hand, continuously reflect each other's state. Device is also used to 
describe the instance of the equipment class. Also called equipment-
software component. 
 
Device Collection: A class that holds all instances of your equipment 
software, it provides the sum (deviceCollection.size()) of all instances and 
the actual instance number for the device loop (deviceCollection[i]). 
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DMS: FESA Data Management System, for data handling between FESA, 
the database, the scripts and XML storage. 
 
 
DSC: Device Stub Controller, the unit of a mainframe (VME, cPCI, etc.) 
and an inserted CPU board. 
 

E.  
Equipment-software component: the FESA project, see Device 
 
Equipment-Specialist: see User. 
 

F.  
FAPP: Master FESA class (application part) for PLC classes.   
 
FEC: Front End Computer (also known as DSC). The destination for 
deployed FESA classes. 
 
FESA: Front-end software architecture 
 
Field: An object that contains specific device-data (input, output, 
parameter or state-variable). They can be multiplexed with respect to 
some pre-defined criterion (e.g. a specific user or particle-type) and are 
associated with some persistency attributes. Field naming is valid within a 
particular device's scope. 
 
Final: see Persistency 
 
FPLC: FESA PLC class (in the Design-Tool).  
 

G.  
GM: General Module, forerunner of FESA framework.  

H. - 
I.  

IEPLC: Protocol and client library for PLC communication. Required for 
FESA-PLC connection. 
 
Instantiation: On a FEC several instances of a class may be defined. 
Example: one FEC hosts several channels for current-transformers, which 
are installed in different timing-domains. For all these the settings can be 
different. Every BCT gets its own instance with its own settings. The 
settings are done in the Instantiation-Tool. 
 
Instantiation-Tool: A Java application provided on the Development 
Corner website as stand-alone tool. It is also included in the “Shell” on the 
same website. 
 
it-Field: Interrupt field for logical-event-groups, belongs to the device-
data fields. 
 

J. - 
K. - 
L. Line: Targets or users like SFTPRO, EASTA, ZERO etc. 

 
Logical Event Group: Event type to organize RTAction triggers for 
separate instances.  
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LTIM: Local timing events, selfmade timing logic, like bursts etc. 
 

M.  
Multiplexing: The accelerator complex is a resource shared by different 
users. Sharing is achieved by a time-multiplexing scheme (a.k.a PPM) 
whereby users are allocated specific time-slots during which they are 
somehow granted ownership of the accelerator's sensors and actuators. By 
extension, this multiplexing scheme may accommodate several 
multiplexing dimensions with respect to which settings (resp. acquisitions) 
of actuators (resp. sensors) are associated with a particular usage context. 
For instance, the settings of a bending-magnet may differ according to the 
type of particle the beam is made-of, or according to the destination at 
which it is targeted. 
 
MultiplexingContext: within your code this is used as a parameter 
passed to a function which is multiplexed. It provides the actual line. 
  

N.  
Navigator: an auxiliary test environment available within the FESA shell. 
All designed properties are accessible, especially within a timing-context, if 
defined. Data output can be visualized (graph, table, etc.). See 
Navigation-Tool. 
 
Navigation-Tool: A Java application provided on the Development Corner 
website as stand-alone tool. It is also included in the “Shell” on the same 
website. See Navigator. 
 

O. Operator: Person in charge of beam and accelerator control, working in 
the CCC, Cern control center. He is a user of the GUIs on the upmost tier 
of the control system. 

P.  
Payload: standard name for a data package which can transport values, 
strings, objects, etc. from class to class or Server Action to RTAction and 
so on. 
 
Persistency: a data field must be specified as VOLATILE, PERSISTENT, or 
FINAL. 
Volatile means you have to initialize your field value at startup, e.g. in the 
Instantiation-Tool or in specificInit (RT folder, 
DeviceClassNameRealtime.cpp) function. PERSISTENT means you only 
initialize the field once, and then the last used value is stored in a file 
called “DeviceClassNamePersistentData.xml” for all instances. Final means 
once set treats a given value as a constant. 
 
Persistent: see Persistency 
 
PLC: Programmable Logic Controller, a small computer used for 
automation of industrial processes, often used in harsh environments. Also 
known as SPS (the German acronym). 
 
PLC-RTAction: see Actions 
 
PLS: Program Line Sequencer, Syntax: timing-domain.groups.line, 
example:  
PSB.USER.SFTPRO 
 
PPM: Pulse-to-pulse modulation. Every pulse is a cycle which can have 
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different settings. 
 
Property: The standard-form of a service published by a FESA equipment 
class. A property has a name, a type and can be accessed in get-or-set 
mode. Invocation of a property implies passing its subject (a device name) 
as well as its context (a timing selector) to the equipment class. 

Q. - 
R.  

Real timing: The global accelerator timing based on CTIM and LTIM 
events. The alternative can be the timing-simulation within the 
Instantiation-Tool.  
 
Retrofit: A procedure to update a FESA class from an older to a newer 
FESA version. Usually this can be done by using script commands. 
 
RPC: Remote procedure call, a kind of remote method invocation from one 
computer to another.  
 
RTAction: see Actions 

S.  
Selection-criterion: An option within the scheduling-unit to filter 
instances with equal criteria, can be used in combination with 
concurrency-layer. 
 
Server Action: see Actions 

T.  
TGM: telegram data within the timing-event. 
 
Timing Domain: Each machine is operating in a special time domain. The 
available time-domains are: CPS, PSB, ADE, LEI, SPS, SCT and 
LHC. 
 
Timing-Simulation: this test function is provided by the Instantiation-
Tool, in case no real timing is available. 
  
Tree: The graphical Java tools to design, deploy, or instantiate FESA 
classes use trees with branches and sub-branches which have to be filled 
with life. 

U.  
User: in most times the person in charge of installing a device in FESA, 
but also the beam targets or lines such as SFTPRO, ZERO or EASTA are 
called users (24 Users max.). Also, a timing-domain such as LHC or LEI is 
sometimes called user. Be careful and watch the context where “user” is 
used. 

V.  
Volatile: see Persistency 

W. - 
X. - 

 
Y. - 
Z. - 
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9. Data Types 
 
FESA data-types are currently restricted to the ones supported by JAVA. These 
are: 
 
 

Scalar Types  Uni-dimensional array Types Bi-dimensional array Types 

bool bool bool 

byte short byte 

short long short 

long long long long 

long long float float 

float double double 

double string string 

 
 
In some cases the type definitions for IEPLC, PLCs, C++, and JAVA are different 
and have to be converted by the system. The differences are listed here: 
 

IEPLC 
Types 

SCHNEIDER 
PL7 

SCHNEIDER 
Unity 

SIEMENS 
SIMATIC 

bit 
size 

C/C++ 
Types 

JAVA 
Types 

CHAR WORD WORD Yes 8 char char[…] 

BYTE Yes Yes Yes 8 unsigned char short 

WORD Yes Yes Yes 16 unsigned short long 

DWORD Yes Yes Yes 32 unsigned long long long 

INT WORD Yes Yes 16 short short 

DINT DWORD Yes Yes 32 long long 

REAL Yes Yes Yes 32 float float 

DT* Yes Yes Yes 64 double double 

 
*DT is equivalent to an 8 byte array (64 bits) used to format the date and time.  
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11. Addendum 

11.1. Example source code for the TRIC module 
 
Additional code for the device access called devHandle.cpp and devHandle.h 
based on the TRIC-module driver. 
 
#include <devHandle.h> 
#include <TransferlineTrafoDevice.h> 
#include <FesaException.h> 
 
using namespace TransferlineTrafo; 
 
devHandle *devHandle::pSingleInstance=0; 
 
devHandle::devHandle(){ 
 
  access_mode = IOCTL; 
   
  vector<TransferlineTrafoDevice*>* pDevCol = 
TransferlineTrafoDevice::getDeviceCollection();  
  char *modName =(char *)TransferlineTrafoDevice::pGlobalStore->integratorModName.get();  
  handle = new HANDLE[pDevCol->size()];  
  for (unsigned int i=0; i< pDevCol->size(); i++) { 
    int lun=(*pDevCol)[i]->hw1Lun.get(); 
    int chanN=(*pDevCol)[i]->hw1Ch.get(); 
    handle[i] = DaEnableAccess(modName, access_mode, lun, chanN); 
  } 
} 
HANDLE devHandle::getDevHandle(const string &devName) { 
  if (pSingleInstance == 0) 
    pSingleInstance = new devHandle(); 
  vector<TransferlineTrafoDevice*>* pDevCol = 
TransferlineTrafoDevice::getDeviceCollection();  
  for (unsigned int i=0; i< pDevCol->size(); i++) { 
    if (!strcmp((*pDevCol)[i]->name.get(),(const char *)devName.c_str())) 
      return pSingleInstance->handle[i]; 
  }   
  throw FesaBadParameter("TransferlineTrafo: ",-1,"Bad device Name"); 
} 

devHandle.cpp 
 
 
#ifndef _TransferlineTrafo_devHandle_H_ 
#define _TransferlineTrafo_devHandle_H_ 
 
#include <fesa/Fesa.h> 
#include "TransferlineTrafoDevice.h" 
#include "TransferlineTrafoGlobalStore.h" 
extern "C" { 
#include "Tricinclude/TricRegId.h" 
#include "VMEinclude/DrvrAccess.h" 
} 
namespace TransferlineTrafo { 
 
class devHandle { 
 public:  
        devHandle (); 
 static HANDLE getDevHandle(const string &devName); 
        private:  
 static devHandle *pSingleInstance; 
 HANDLE *handle;                       /* library handle */ 
 METHOD access_mode; 
} ; 
} 
#endif 
 

devHandle.h 
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Definition and declaration of helpful functions for read and write actions to the 
hardware: 
 
 
 
#include <devHandle.h> 
#include <TransferlineTrafoDevice.h> 
#include <FesaException.h> 
#include "measFunc.h" 
 
using namespace TransferlineTrafo; 
 
 
int TransferlineTrafo::ReadTricRegister(HANDLE handle, int regid){ 
 
  int nmemb, elSize, retCode, value; 
   
  nmemb  = DaGetRegDepth(handle, regid); //MEAS_LO_I_RES_ID = MEAS_HI_I_RES_ID 
  elSize = DaGetRegSize(handle, regid); 
  retCode = DaGetRegister(handle, regid, &value, (elSize*nmemb)); 
  if (retCode <= 0) 
    throw FesaBadParameter("TransferlineTrafo: ",-1,"Bad device Name"); 
    
  return(value); 
   
} 
 
int TransferlineTrafo::WriteTricRegister(HANDLE handle, int regid, int &value ){ 
 
  int elSize, retCode; 
   
   
  elSize = DaGetRegSize(handle, regid); 
  DaSetRegister(handle,regid,&value,elSize);    
  if (retCode <= 0) 
    throw FesaBadParameter("TransferlineTrafo: ",-1,"Bad device Name"); 
    
  return 0;   
} 

measFunc.cpp 
 
 
 
#ifndef _TransferlineTrafo_measFunc_H_ 
#define _TransferlineTrafo_measFunc_H_ 
 
#include <fesa/Fesa.h> 
#include "TransferlineTrafoDevice.h" 
#include "TransferlineTrafoGlobalStore.h" 
extern "C" { 
#include "Tricinclude/TricRegId.h" 
#include "VMEinclude/DrvrAccess.h" 
} 
 
 
namespace TransferlineTrafo { 
 
  int ReadTricRegister(HANDLE, int); 
  int WriteTricRegister(HANDLE handle, int regid, int &value); 
} 
#endif 

measFunc.h 
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The source code files above have to be linked to the FESA device 
class by adding them into a make.specific file. 
 
 
# 
#  FESA framework  June 2004. 
# 
 
 
# specific sources (.c file) 
SPECIFIC_CSRCS = 
# specific headers (.h file) 
SPECIFIC_CSRCSH = 
# specific sources (.cpp file) 
SPECIFIC_CLSRCS = measFunc.cpp devHandle.cpp   
# specific headers (.h file) 
SPECIFIC_CLSRCSH = measFunc.h devHandle.h  
# specific path for include files (-I/...) 
SPECIFIC_CXXFLAGS =  
# specific library paths 
SPECIFIC_LIBPATH= 
# specific libraries 
SPECIFIC_LIBS= 

 make.specific 
 
Source code of the acqRTAction for the TRIC module: 
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