

FFEESSAA PPRRIIMMEERR

A Simple and Fast Approach
from a User’s Point of View

FESA Version 2.9

3/2007

DRAFT

FFEESSAA PPRRIIMMEERR

TABLE OF CONTENTS

1. PREFACE AND REQUIREMENTS...5

1.1. User ..6
1.2. Infrastructure ...6

2. THE FESA PROJECT WEBSITE ...7

2.1. Main Page..7
2.2. Development Corner..8

3. PRINCIPLE AND TECHNICAL TERMS ...9

3.1. Design...10
3.1.1. Ownership .. 11
3.1.2. Standard-class / Plc-class ... 11
3.1.3. Equipment-Links ... 11
3.1.4. Std-Services ... 11
3.1.5. Interface .. 12

3.1.5.1. Properties ... 12
3.1.6. Custom-Types... 15
3.1.7. Data .. 16

3.1.7.1. Device-Data .. 16
3.1.7.2. Global-Data... 17
3.1.7.3. Domain-Data ... 18

3.1.8. Actions... 18
3.1.8.1. Server Action... 18
3.1.8.2. RTAction ... 19
3.1.8.3. PLC-RT-Action.. 20

3.1.9. Events ... 21
3.1.9.1. Logical Event ... 21
3.1.9.2. Logical-Event-Group ... 23
3.1.9.3. Custom Event Source.. 24

3.1.10. Scheduling.. 24
3.1.10.1. Scheduling-Units .. 25
3.1.10.2. Concurrency-Layer ... 26

3.1.11. Target-Timing-Domains .. 26
3.2. Linux Utilities ..27
3.2.1. The FESA Commands ... 27
3.2.2. Retrofit .. 28

3.3. Deployment...28
3.3.1. Version .. 29
3.3.2. Deployment Option.. 29
3.3.3. Startup .. 30

3.4. Instantiation ...30
3.4.1. Multiplexing .. 31
3.4.2. Timing-Mapping .. 31

3.4.2.1. CTIM .. 31
3.4.2.2. Timer ... 31

3.4.3. Timing-Simulation ... 32
3.4.3.1. <Domainname>-Domain... 33

 22

FFEESSAA PPRRIIMMEERR

3.4.4. Instances ... 36
3.4.4.1. <Domainname>-Device-Instance ... 36
3.4.4.2. None-<Domainname>-Device-Instance................................. 36
3.4.4.3. NONE-Device-Instance.. 36
3.4.4.4. <Domainname>-Domain-Data ... 36

3.4.5. Global-Data .. 37
3.5. Navigation-Tool...37
3.6. Data Management / Source Code Generation................................38
3.7. PLC-Interface ..40
3.7.1. PLC Requirements ... 41

3.8. Alarm-Interface ..42

4. EXAMPLE FESA CLASS ..43

4.1. The Module TRIC ...43
4.2. The Example Design ..45
4.3. Source Code Production and Coding..49
4.3.1. Server Action .. 49
4.3.2. RT Action ... 50
4.3.3. The SpecificInit Class ... 51

4.4. Deployment of the Example Class ...52
4.5. Instantiation of the Example Class..53
4.6. Testing of the Example Class...54

5. FILES IN PROJECT ..55

5.1. Common..55
5.2. CVS ...55
5.3. GENERATED_CODE ..55
5.4. RT..57
5.5. SERVER ...57
5.6. TEST..58

6. HOWTO…..58

6.1. Use the FAQ...58
6.2. Use BitEnum..59
6.3. Trigger an RTAction on User request...59
6.4. Create a DeviceCollection..60

7. REFERENCES...61

8. GLOSSARY..62

9. DATA TYPES ...66

10. TABLE OF FIGURES...67

 33

FFEESSAA PPRRIIMMEERR

11. ADDENDUM ..68

11.1. Example source code for the TRIC module68

 44

FFEESSAA PPRRIIMMEERR

1. Preface and Requirements

The implementation of front end devices of any type such as PLCs,
VME modules, CCD cameras and so on, into the CERN control
system is not an easy task. As the number of devices at CERN is
unpredictably high, the control group decided not to do this job in
every case, but developed a framework in which every user of a
device is able to implement it himself. This framework is called
FESA, the Front End Software Architecture, and the principle and
manner of working within this framework is described in this
document from a user’s point of view.

The main goal using this framework is to receive an executable
program (device class), which is running on one or many user’s
front-end CPUs (FEC) or PCs and which performs all of the required
tasks, such as getting and setting data within an adequate time
frame. FESA helps with all intermediate steps regarding the timing
connection, deployment and instantiation of the class. Not provided
within FESA is a final graphical user interface, but a flexible test
environment to check all functions of the class.
The advantages using this framework are manifold. The most
important of them shall be listed here to motivate the new FESA
user:

• it provide for reuse of code, which saves plenty of developing
time. This code is already debugged and tested.

• the interfaces with the next upper level (middleware) are
uniform and instantly accepted.

• changes and debugging are easier to handle, by the user, by
others, and also up to 10-15 years in the future.

• the amount of programming (in byte and time) is exceedingly
reduced due to automatic code generation.

• CVS (Concurrent Versions System) based source code
management for version control, safety, and multiple
developers.

• the growing FESA community provide for additional support,
tips, and tricks

The FESA framework has to be used for all new devices being added
to the control system. In case of problems with FESA the experts
from the FESA project team are willing to assist. Exceptions to this
regulation have to be discussed with the respective people in the
CO-group. As with any other way of implementing devices into a
control system, there are some requirements, recommendations,
and restrictions:

 55

FFEESSAA PPRRIIMMEERR

1.1. User

• The user is a “device expert”. That is, he knows what he
wants to do with his device and how it works.

• The user has basic knowledge of the CERN timing system and
of the machine and event names he will need to trigger his
equipment.

• A hardware driver is required.
• The work with FESA requires a basic knowledge of C++.
• The user needs some time and patience to learn FESA.
• He should carefully read all existing information, which

already exists on the FESA project website:

http://cern.ch/project-fesa/

The “FESA Essentials” [1] especially give a compact overview of
FESA. Its contents will be partially repeated in this document.

1.2. Infrastructure

• FESA is not available from outside the CERN intranet.
• The graphical development tools of FESA are realized in JAVA,

therefore Windows, Linux, and Mac operating systems are
supported. The actual Java Runtime Environment must be
installed on your system.

• For the source code development, an appropriate Linux
Account is required.

• The supported FECs are: Motorola, PPC, Intel
• FESA device classes can run on Linux and LynxOS.

This document does not describe every button and functionality,
only those which were found to be important. Play around with all
the icons and menu entries to find all the features. The FESA
development is permanently continued (2.9 at the moment), so
parts of this document may no longer be valid. Please report
mistakes to the FESA team.
The words formatted in italics shall point to its FESA origin.

 66

http://cern.ch/project-fesa/

FFEESSAA PPRRIIMMEERR

2. The FESA Project Website

2.1. Main Page

Open the FESA homepage at http://cern.ch/project-fesa

Fig. 1: FESA main page

The three links labeled “Development Corner Version X.X” lead to
the collection of Java tools required for FESA. For new projects the
latest version should be chosen. It is recommended that users
update their compilations with the latest version, as older versions
(latest – 3) are not supported anymore.

The link named “Bug Report” offers the possibility of sending an
email to the FESA team in case of problems with FESA.
Recommendations and comments are also accepted.

Following the link “Features and Bug Fixes” gives information about
all active bug reports and upcoming features. The JIRA

 77

http://cern.ch/project-fesa

FFEESSAA PPRRIIMMEERR

documentation provides the possibility to track a (your) bug in a
very convenient and transparent way.

The access to the link “Project Corner” is permitted only to the FESA
developers.

2.2. Development Corner

Fig. 2: Development Corner

This page provides all necessary tools and available documentation
to create FESA device classes. The use and function of these
development tools are described in detail within Chapter 3.
The links “Design-Tool”, “Instantiation-Tool”, “Navigation-Tool”, and
“Deployment-Tool” are all combined in the link “Shell” for easy
access.
The “Data Management Tool” is used to delete instances from a FEC
and to switch to another software version of your device class on
the FEC.

 88

FFEESSAA PPRRIIMMEERR

The “Logging Tool” is not completely functional and should not be
used.

The “CVS” (Concurrent Versions System) link gives read access to
the complete FESA device class repository. Here you are able to
study source code and to get an overview about the different
versions of device classes.
The “API Documentation” is a helpful Doxygen based reference for
FESA users in the programming phase.

All available documentation on FESA is listed in the left sidebar.

3. Principle and Technical Terms

Fig. 3: Schematic overview of the FESA development workflow

The flow of a FESA class development starts with the design. Herein
you specify the inputs and outputs of data, as well as the actions
and timing. The conclusive and valid design forms the foundation of
the C++ source code generation, which is performed automatically.
The programming of the event-and-user driven actions is the next
step and has to be done by the user. The source code is delivered to
the CVS repository and the compiled executable and its associated
files are deployed to the relevant FECs. Finally all required instances
of the device class are generated and the class is ready to be tested
using the “Navigation-Tool”.

 99

FFEESSAA PPRRIIMMEERR

3.1. Design

The design phase is the first step on the way to creating a FESA
class. To create an equipment model (FESA class) the “Design-Tool”
is used, which is available on the “Development Corner” as a stand-
alone Java tool or as part of the “Shell”.

Fig. 4: Screenshot of the Design-Tool within the “Shell”

To start a new design, click “New” in the menu or press the
accordant icon. You may then select a template with preconfigured
settings, e.g. the full template.

This tree lists all available design parts, which
are described in detail below. It is not
necessary to use them all; the usage depends
on the type of the class. To create a valid
design, inter-dependencies between different
design parts have to be solved. If not, the
“Design-Tool” gives warnings and signals, e.g.
red fonts at missing inputs, instantaneous at
design time.
In general, if the design is valid, a appears
in the bottom right corner. In fault state the
warning symbol shows up.

Tree 1: Equipment model

 1100

FFEESSAA PPRRIIMMEERR

After creating and editing the design, it has to be stored in the FESA
class database by selecting “Store” in the menu. At the first save, a
significant name has to be entered. FESA handles the user inputs in
XML files. It is possible to store and open these files separately.
While designing you may use the right mouse button to add or
replace features. Some entries are restricted by naming
conventions; the correct pattern is then displayed in the state
window.

3.1.1. Ownership

The creator and the editor(s) are entered here with their typical
account name. This information is required for access control of the
design.

3.1.2. Standard-class / Plc-class

The design branch standard-class is used for most equipment
designs. In case you design a FESA class for PLC devices you may
change the standard-class entry to plc-class. There are already
typical PLC options available (see Chapter 3.7).

3.1.3. Equipment-Links

Usually FESA classes are developed as stand-alone classes. If it is
necessary to link separate FESA classes, the “Equipment Links”
have to be defined. This can be done to reduce complexity of a class
or to connect to classes which are deployed on different FECs.
This special task provides a separate manual with examples. This
can be found in the “Development Notes”, the link is reached via
the “Development Corner” sidebar.

http://project-fesa.web.cern.ch/project-fesa/development/notes.htm

3.1.4. Std-Services

PLC

Inheriting the standard PLC interfacing service brings several pieces
of information into your design. These pieces of information
configure the communication-protocol which allows the FEC at one
end, and the PLC at the other, to maintain a consistent state of the
device they each see. This std-service is referenced by a PLC-

 1111

http://project-fesa.web.cern.ch/project-fesa/development/notes.htm

FFEESSAA PPRRIIMMEERR

RTAction. If no PLC-related activities are foreseen, this service
should not be set to plc.

GM

Selecting the standard GM interfacing service allows you to add old-
style General Module properties into your design. This allows legacy
C applications to access your equipment through RPC. When you
decide to inherit from the GM interface service, RPC-handling code
will automatically be integrated into your equipment class. This
option has to be set in case a gm-property is defined.

3.1.5. Interface

The interface branch of the design tree defines all get-and-set
functions providing data exchange from and to the outside (clients
from the control-room or middle-tier software layer). Designing the
interface means listing so-called properties that can be remotely
accessed through the controls-middleware. You should devote great
care to defining your equipment class interface as this can be
viewed as the binding-agreement between your class and its
external users. When you create a new version of an equipment
class it is your responsibility to ensure backward compatibility with
Java applications that access its interface.
For performance and usability reasons the interface should be
simple and short. This can be accomplished by combining similar
value-items to one property.

3.1.5.1. Properties

A set of predefined properties is available. These are:

alarm-events-property
The alarm-events-property (since 2.9) is designed to be completely
managed automatically. It collects all information from the defined
alarm-fields and handles the alarm as specified to operate with the
LASER system. The attached items to the alarm-events-property,
such as name-, state-, stamp-, prefix- and suffix-item provide dim
fields, which have to be filled with the maximum amount of alarm-
fields specified in the device-data. In subscription on-change (at
application or middleware level), only alarm-fields which have a
different state from the previous call will be reported to the client. If
nothing has changed, nothing will be sent.

alarm-details-property

 1122

FFEESSAA PPRRIIMMEERR

The alarm-details-property is designed to report dynamic details for
a specific alarm. Those details are optional and can be defined
individually on each alarm-field by adding a standard-key and/or a
user-key. The client, who calls this property, specifies the alarm-
field name on which he wants details, after which the key values of
all keys defined for this particular alarm field will be reported.

std-setting-property
std-acquisition-property
std-reset-property
std-status-property

Note:
“std” is an abbreviation for “standard”, not to be mixed up with the
US medical abbreviation for “sexually transmitted disease”.

All the std-properties conform to the standards and guidelines of the
applications group [2] and have to be used if the std-property sense
matches with your concept. Editing of these properties is very
restricted. All other properties are treated as expert properties and
have to be adapted separately.

std-copypl-property

This property provides the possibility to copy PLS settings from one
to another line. The value-item in this specific property is the line
name (e.g. PILOT1)

property

This is the most common used property, or expert property, where
you define its use on your own. Dependent on your requirements
and your C++ coding concept, you have to select between simple
and complex functionality. These two settings are described on the
following pages.

gm-property

As GM is the forerunner model for FESA, this property provides the
interface for FESA projects with GM based applications (GUIs).

With your property entry you have to decide whether you wish to
perform a default get/set action, which reads and writes on a

 1133

FFEESSAA PPRRIIMMEERR

specified data field (see Chapter 3.1.7) without additional C++
coding (use simple), or defining a complex property, which then is
linked to a custom Server Action (see Chapter 3.1.8).

A property can hold one or several so called “items” such as:

value_item:
complex property, can be of all data types (see Chapter 9)

filter_item:
used for data shaping, averaging and other calculations

data-field-ref-item:
standard data field (in: data, device data, field)

data-field-role-item:
like the ref-item, but used to give an alias name

state-field-ref-item:
refers to a state-field and custom-types state-enum

state-field-role-item:
like ref-item but used to give an as alias name

data-field-bit-ref-item:
refers to a single bit in a custom-types bit-enum

error_status_item and
error_message_item:
created and used by the std-status-property

Multiplexing Criterion

With any defined property a multiplexing-criterion has to be set to
either NONE, which means this type of get or set function for all
value-items is valid for all possible timing-domains (accelerators) or
to USER, to read from and write to the settings of an exclusive
timing-domain. If in a property a data-field-ref-item was set, then
this multiplexing-criterion is already known from the data-field
settings. For value-items in complex properties, a combo-box
provides the selection between USER and NONE.

Simple

 1144

FFEESSAA PPRRIIMMEERR

In most cases defining a simple property is absolutely sufficient.
Each individual item maps on an existing field (see Chapter 3.1.7).
This characteristic makes it possible to rely on a default Server
Action (see Chapter 3.1.8) instead of having to supply specific code
for serving the property. In addition a connection to a custom
Server Action is possible via a server-action-ref definition.

Complex

A property is said to be 'complex' when the individual value-item do
not simply map on internal fields (it may be still possible via a data-
field-ref-item). A complex property may also define a 'filter' which
specifies the treatment performed by a custom server-action that
serves the property. It is foreseen that the regular value-item may
be limited by range settings using min and max.

3.1.6. Custom-Types

You may rely on a set of custom-defined constants, enumerated
types and 16/32-bits bit-patterns in your design. These custom-
types are built on top of basic 'underlying types' (e.g. short, long).
The controls-middleware has no knowledge of the custom-types and
interprets them as their underlying type. Therefore, it is your
responsibility either (1) to ensure that such custom-types are used
only internally by your equipment, or (2) to make sure that any
public property that would refer to the custom-types is restricted to
those applications that have knowledge of how to reinterpret the
underlying-types used for transmission.

Examples:

(1) Define a constant, name it e.g. RESOLUTION, enter a value e.g.
0.005 and select the type const float. Use this RESOLUTION within
your source code for calculations.

output = measValue * RESOLUTION;

The middleware is not interested in this constant. But on change of
RESOLUTION you can update its value easily within the design.

(2) Define a bit-enum-32bits, name it e.g. CONFIG_REGISTER,
open the sub-branch and name all bits separately. In addition you
can set startup states to each bit selecting true or false.
Then define a data field (see Chapter 3.1.7) named configReg and
create a reference using custom-type-ref CONFIG_REGISTER. Now

 1155

FFEESSAA PPRRIIMMEERR

a self-defined property can perform get-and-set actions to this field
configReg, which is based on a custom type.

3.1.7. Data

The data branch is the reloading point of all handled data and the
heart of the device model. It provides the device data, the global
data and the domain data branches to define and to allocate the
placeholders for all possible values, results, text strings etc.
required for the all-embracing interaction between the user and the
hardware.
Main purposes of this data field principle are to represent the
complete device data model and to buffer user inputs, which are not
processed immediately. This method provides some safety as a user
typically can not disturb a critical sequence of processes or
RTActions by a direct hardware access.

3.1.7.1. Device-Data

These fields store settings, acquisitions, parameters and variables of
all device-instances and beam users to provide a snapshot of the
current state of the device's hardware counterpart, or to hold
settings ready which have to be sent to the hardware on a specific
trigger.

Fig. 5: Visualization of the device data field functionality and its access techniques

Figure 5 describes how the data fields are accessed. The detailed
explanation of Server Action and RTAction follows in the Chapter
3.1.8.

 1166

FFEESSAA PPRRIIMMEERR

A set of different predefined field types is available:

The hw-adrs fields provide the possibility to define hardware
relevant fields such as lun (logical unit number), ch (channel), or
type, which can be set later within the instantiation part. Working
on a PLC-Class this field is used to define a plc-hostname.

The fault-fields hold boolean values. These tell if fault-states are
active or not. From within the C++ code, or a real-time or Server
Action, you raise a fault by setting the corresponding fault-field to
'true'. You suppress the fault state by 'resetting' the field, which
means setting its value to 'false'. Fault-fields are used to manage
states on the front-end part, e.g. stop a server-action on a faulty
state of a register. Working on a PLC-Class, there are already three
predefined fault-fields which cannot be changed.

The alarm-field is similar to the fault-field with a slightly different
character as an alarm may be raised also on informative states such
as “scintillator moved in the beam”, which is not a fault, but really
important to know. For this, the static alarm message (conform with
LASER API) may be characterized through a series of optional
standard or user-keys. The standard key uses the alarm-field’s
name, which is being added either as prefix (in front of the alarm-
message) or as suffix (behind the alarm-message) to provide this
name information. The user-key can deliver more information
placed in its user-key name field. In addition, for an expert rating
the severity degree such as ERROR, WARNING, and OK, can be
defined. For several sub-items of the alarm-events-property the
amount of the alarm-fields has to be entered into their dim fields.
(see also 3.8).

The state-field is bound to a state-enum variable defined within
the custom-types branch. These predefined states couple strings
such as ON, OFF etc. with numbers to be used in C++ coding.

The interrupt-field is required when operating with the event type
logical-event-group. In the instantiation part this field is coupled
with an LTIM/CTIM event.

The field is the most commonly used data field to get-and-set data
from the user to the hardware. Out of a set of different data types,
such as 1-dim-arrays, 2-dim-arrays or scalar types, the adequate
type may be selected.

3.1.7.2. Global-Data

 1177

FFEESSAA PPRRIIMMEERR

This type of data is available all over your FESA class and valid for
all instances. Global-data fields cannot be used in a multiplexing
context.

3.1.7.3.

3.1.8.1.

Domain-Data

In the domain-data branch, so-called telegram-group-fields may
be defined. These fields are filled with definitions given in the
Instantiation-Tool. The sense behind the domain-data fields is to
provide specific tgm-data (telegram data within the timing-event)
within your RTAction source code to be used for target-specific
actions at runtime, for example a low intensity beam line (fixed to
low intensity) for which a transformer always has to be set to a
more sensible gain-range or to obtain the particle type for
evaluation purposes.

3.1.8. Actions

Actions are the basic work-units of the equipment software. They
come in two flavors: the real-time actions are triggered by central-
timing events and interrupts. The Server Actions implement user
request-handling. Right from the design stage, the equipment
specialist has to list all the action-classes that can be executed at
any time by user intervention or by triggered events.
The FESA equipment class, your project, can be described as a
server. When a client, for example the controls middleware,
requests a get-or-set action, this request is accepted by your server
and is packaged as an event and transmitted to the Server Action.
This is similar to all kind of actions described here. All actions
provide in their source code the execute(Event *) method, which is
then executed. This is the method which has to be filled with source
code by the user.
The different types of actions and their access directions are shown
in Figure 6.

Server Action

The Default Server Action performs a get and/or set operation
without user defined source code. This action need not be specified
under the design branch actions, but in the interface part, where a
“simple” property-item may be defined with the get/set default-

 1188

FFEESSAA PPRRIIMMEERR

action. The corresponding data field may then be set or read out
automatically on user request. See also Figure 6.

The Server Action is more powerful when implemented as user-
specified code such as text output, calculations, etc. The code frame
(a .cpp and .h file) is generated by the Linux command Fesa
Synchronize and is stored in the SERVER directory. The name of this
file equals the name of the defined Server Action in the design
branch “actions”.
A Server Action is primarily timing independent, of course there are
ways to use external or user triggers to execute the Server Action.

Fig. 6: Differences between Default, Custom and RTAction

3.1.8.2. RTAction

The RTAction executes user-defined code. On a standard event
driven electronic or data acquisition system, the RTAction is the part
where actions of any type, such as read on register, calculate data,
initialize hardware, or move actuator, are performed in time. A
started RTAction has maximum priority, so new incoming triggers
are delayed until the RTAction has finished. Also, user-executed
Server Actions are delayed when an RTAction is running.

DeviceCollection

In Figure 5 within the Chapter 3.1.7.1 the so called DeviceCollection
was already mentioned. As more than one instance (e.g. 2, 3, or
more modules of the same type or other certain grouping criteria)

 1199

FFEESSAA PPRRIIMMEERR

might be present in your equipment, and all provide perhaps
different settings or deliver different results, they have to be treated
separately. For this, the class deviceCollection provides its size and
instance number for the RTAction. The code of an RTAction is
enclosed in a device-loop, which leads to an access of every
instance per event (see Figure 5, 3.1.7.1).

MultiplexingContext

The multiplexed usage of the different accelerators requires some
special handling of your C++ code. In case the data of your
acquisition is dependant on special lines (SFTPRO, EASTA, etc.), and
you have entered one or more valid target-timing-domains in your
design (LHC, LEI, PSB etc.), you have to provide the
MultiplexingContext. For every get-and-set function you have to add
this context as a parameter.

Example:

MultiplexingContext* pContext ;
pContext = pEv->getMultiplexingContext();

 READ:
float hv_value = pDevice->hvValue.get(pContext);

OR WRITE:
 pDevice->hvValue.set(hv_value, pContext);

It is recommended to assign always the pContext as a parameter in
the source code, even if not used. In case of later switching to
multiplexed usage, no rework of the code is necessary.
The principle of this MultiplexingContext provides a big help for the
developer as no more time has to be spent on handling the timing.

3.1.8.3. PLC-RT-Action

The PLC-RT-Action is a derivate of the RTAction, but is already
equipped with special PLC procedures, such as

GetAcquisition
GetConfiguration
SetPLCCommandFields
SetPLCConfigurationFields

 2200

FFEESSAA PPRRIIMMEERR

These actions reference the std-services PLC and are triggered and
scheduled like the RTActions. The prepared source code files are
stored in the folder GENERATED CODE in your Linux development
path.

3.1.9. Events

The equipment is usually synchronized with the overall accelerator
timing by receiving deterministic events. For each class, the
equipment-specialist has to define a list of logical events by giving
those names within the scope of the equipment-class. The binding
of logical events with your RTActions is done in the scheduling
branch. The final specification of these logical events with
accelerator-, timer-, or hardware interrupt setting is done later
within the Instantiation-Tool.

3.1.9.1. Logical Event

The logical events belong to the explicit event types. Explicit means
the RTAction with its corresponding trigger will be set at design
time. This setting is valid for all instances, independent of how
many there are.

Timer

Choosing timer as a logical event provides an internal clock which
generates events in infinite constant time-steps (constant
frequency). This leads to triggering your action independent of the
general accelerator timing. The step size (in ms) has to be defined
in the timing-mapping branch of the Instantiation-Tool. This feature
is used for example, in getting frequent updates of a temperature or
pressure measurement where accelerator timing is not an issue.

Mtg

Choosing mtg (master timing generator) as a logical event defines it
as being dependent on a specific accelerator event (CTIM), which
has to be specified in the timing-mapping of the Instantiation-Tool.
Using the mtg logical event requires a hardware connection of your
FEC with the global timing network. In addition, a timing-domain
has to be specified within the target-timing-domain branch of the
design tree.

 2211

FFEESSAA PPRRIIMMEERR

Custom-event-source-ref

This setting references a custom-event-source, which is explained in
3.1.9.3.

User

User event sources are not instantiated by the framework. An
operator can trigger an RTAction using a Server Action. This type of
triggering is timing-independent and also useful for sending
information as a payload to the hardware.

//Not available anymore

Example FESA Class TestUserEvent: The class Interface * pClassIntf
provides the method fireUserEvent(evt,payload). This method has
to be called in the Server Action, which shall trigger the RTAction.
See an example in the Chapter 6.3.

 2222

FFEESSAA PPRRIIMMEERR

3.1.9.2. Logical-Event-Group

The purpose of this event type is to associate one or more mtg
events to one or several instances, and then to execute one
dedicated RTAction.
The logical-event-groups belong to the implicit event types. Implicit
means the final RTAction trigger will not be set at design time, but
within the Instantiation-Tool. For trigger-setting, every instance
then provides one or more interrupt fields. These can be filled with
CTIM/LTIM triggers provided by the logical-event-group selection in
the timing-mapping branch of the Instantiation-Tool. The required
settings for the design and instantiation phase of this operation are
shown in Figure 7.

Fig. 7: Exemplary structure of a logical-event-group definition

These exemplary settings are leading to the trigger sequence shown
in Figure 8. The RTAction logEventGrpAction is executed 3 times per
cycle. It provides useful data at trigger #200 for both instances and
useful data on trigger #209 only for instance 2. Later in the cycle
on trigger #707, useful data for instance 1 is provided.

 2233

FFEESSAA PPRRIIMMEERR

The explanation of the Instantiation-Tool is done in the Chapter 3.4.

1 300

time

fie
ld

Ev #200

Ev #209

Ev #707

Instance 1Instance 2

Instance 1
&

Instance 2

Fig. 8: Exemplary trigger sequence resulting from the settings in Figure 7. Remark: The
ramping sketch and the trigger positions are fictitious

3.1.9.3. Custom Event Source

A logical event can be linked to a so called custom-event-source.
Custom event-sources are not instantiated by the framework. It is
your responsibility to write C++ code that creates the instances
from within the <classname>RT::specificInit() method of your
equipment class (in the file <classname>Realtime.cpp). When you
define custom-event-sources in your design document, some C++
code templates will be automatically generated in the RT package,
one for each event-source class. Implementing a custom event-
source consists of filling its wait() method. This method
manufactures an RTEvent object along which you may pass a string
payload. Such a payload can then be accessed from within your RT
actions.

3.1.10. Scheduling

 2244

FFEESSAA PPRRIIMMEERR

Within the scheduling branch of the design tree the association
between the logical event (see Events) and your RTAction in so
called scheduling-units will be assembled.

3.1.10.1. Scheduling-Units

Most common scheduling-units consist of a reference to an RTAction
or PLC-RTAction and a reference to a trigger, already defined in the
events branch. This RTAction is executed within the main thread for
the complete device-collection. If there are more than one of these
scheduling-units triggered at the same time or are overlapping,
those are performed sequentially.

Selection-criterion

To be more selective in triggering RTActions the selection-criterion
provides the possibility to filter on different device-collections and
their instances which fulfill the same filter criteria. These can be
equal field values (hw-field, base-field, and data-field), which can
be set explicit to a final value or be implicit (see selection-rule) if a
device-group-implicit-event-ref with an interrupt-field is already
defined. Using the selection-criterion this way executes the
RTAction sequentially for all the instances, fulfilling the criterion.
For the handling of many parallel running RTAction-threads the
selection-criterion is used in combination with the concurrency-
layer. Therefore the per-device-group option of the concurrent flag
has to be set to YES. For all instances of all device-collections
matching the selection-criterion, the referenced RTAction is
executed in parallel.

Selection-rule

implicit:
In case there is a selection condition attached to this scheduling-
unit, this will be automatically augmented so as to make sure that
the devices sorted by the condition also share the same interrupt-
field. If there is no device-selector condition explicitly defined for
this unit, the framework's action factory will create as many
instances of the action as there are homogeneous groups of devices
with respect to the interrupt-field's value.

concurrent:
See 3.1.10.2 Concurrency layer

 2255

FFEESSAA PPRRIIMMEERR

Anticipated

This is a kind of flag which provokes a pretrigger-like operation.
After setting anticipated to a scheduling-unit, the RTAction is
executed one cycle earlier.
Typically these anticipated RTActions are used when a hardware
device has to be initialized before the real measurement trigger
occurs. This can be useful for a slow working or slow communicating
device. Setting the flag only makes sense in a multiplexing context
using mtg-events or mtg-group-events. The mtg-event must not
carry any payload.

Apart from the case of the PS, the mtg-event carries a payload
which dynamically identifies whether the multiplexing-context it
relates to belongs to the current or to the next cycle of the
telegram. In this situation such a flag is of no use.

3.1.10.2. Concurrency-Layer

In case the user wants to execute the RTAction in parallel threads, a
concurrency-layer can be defined. Each layer then requires a
scheduling-unit with reference to the RTAction, a reference to a
trigger plus the concurrent flag with the layer name. This leads to
parallel execution of instances of the RTAction. In case another
instance of the RTAction shall be executed, a new scheduling-unit
and a new concurrency layer have to be added. This is only
reasonable for a few instances.

3.1.11. Target-Timing-Domains

Your equipment class may be deployed on one or several machines
of the AB complex. Each machine is usually associated with a
specific timing domain, while transfer-lines that connect different
machines are usually associated to two domains. A device instance
must belong to only one timing-domain, while you may instantiate
different devices on different timing domains.
The instantiation schema is derived from the information you
provide here, i.e. the possible timing-domain into which you will be
able to instantiate your class will be restricted to the list you provide
here.
If the device class does not require a connection to a timing-
domain, select None. Available timing-domains are:

 2266

FFEESSAA PPRRIIMMEERR

• CPS
• PSB
• ADE
• LEI
• SPS
• SCT
• LHC
• None

3.2. Linux Utilities

When your Linux environment variables are properly defined, FESA
provides you with a set of scripts to automatically create and
populate a C++ development directory, to deliver your equipment
for operation, and to deploy and instantiate it on front-end
computers. The complete description of all available Linux FESA
commands can be found at:

http://project-fesa.web.cern.ch/project-fesa/development/fesaLinuxUtilities.htm

3.2.1. The FESA Commands

The most important commands are listed here:

In case a new device class is finished and
stored in the database, use the command:

 “Fesa Setup <devicename> <version> scratch”.

This creates the complete directory
structure of your new class within your
Linux work folder and also creates the
source code.

Tree 2: Standard directory structure

If you have later on applied changes on your device class (in the
equipment model), you have to perform a:

 “Fesa Synchronize <devicename> <version>”

followed by a “make”, as FESA has to generate new source code out
of it, which has to be recompiled.

 2277

http://project-fesa.web.cern.ch/project-fesa/development/fesaLinuxUtilities.htm

FFEESSAA PPRRIIMMEERR

In case you have applied changes within your instances, e.g. setting
new initial values or adding new instances, you have to perform a:

“Fesa Instantiate <devicename> <version> <FEC-name> <directory>”.

If you want to store your binary on the frond-end and your source
code in the CVS for publication or as backup, you have to perform :

“Fesa Deliver <devicename> <version> <CPU-type>”.

In case you just want to store your source code in the CVS
repository, the commit command may be used:

“Fesa Commit <devicename> <version>”.

3.2.2. Retrofit

Retrofit means updating your FESA class from an older to a newer
version of FESA. Therefore a special Perl-script is available which
does all conversions automatically. For this procedure please follow
the retrofit instructions at:

http://project-fesa.web.cern.ch/project-fesa/development/retrofitNotes.htm

3.3. Deployment

In case you have stored your design and created the necessary
source code, the class itself has to be transported to one or several
FECs.

Note: Additional information on this subject can be found at [4].

For this the FESA Development-Corner website provides the link to
the stand-alone Deployment-Tool or to the Shell.

After opening the Deployment-Tool and pressing retrieve, a pop-up
window requests the selection of a connected FEC to which the
FESA class has to be deployed. The graphical tree shows the already
installed FESA classes on this FEC.

 2288

http://project-fesa.web.cern.ch/project-fesa/development/retrofitNotes.htm

FFEESSAA PPRRIIMMEERR

Fig. 9: Screenshot of the Deployment-Tool (Shell version)

A right-mouse-click on the FEC-fesa-configuration branch offers the
add function, which has to be selected. From all available FESA
classes you have to select the class to be deployed.
Afterwards a new entry can be found in the topmost position of the
deployment tree.

As can be seen in Figure 9, the following parameters have to be set:

3.3.1. Version

Just select the version number of the class which has to be
deployed.

3.3.2. Deployment Option

The deployment options have influence on the performance of the
actual class and also on the whole FEC with all started classes.

single-process:
Server and realtime activities will run as two different threads in
one single process. This is the most common option and is
recommended.

separate-server-split:

 2299

FFEESSAA PPRRIIMMEERR

Two separate server and RT processes are realized, which can
communicate via a shared memory segment.

shared-server-split:
This feature also splits server activity and real-time activity into two
processes, relying on a shared memory segment for
communication, but in this case the server-part is merged with
other FESA classes within a so called shared-server-process.

shared-server-unsplit:
In addition to the shared-server-split, this option also includes the
RT part into the shared-server-process. This method should be
avoided as only one RT task can be handled within this process.

shared-server-interface:
This realizes a class within a shared-server-process which has no RT
part.

separate-server-interface:
Only one single process for Server Action without RT part is
realized.

3.3.3. Startup

Selecting manual means starting the executable manually. This can
be done with a simple ssh <FECNAME> command in a Linux
terminal window. Change to the TEST directory of your class and
enter ./<executablename>.
Selecting automatic leads to an automatic startup of the executable
upon reboot of the FEC. The startup order of several FESA classes
on the FEC is given by the order in the deployment tree.

3.4. Instantiation

The FESA development shell and the Development-Corner website
also provide an Instantiation-Tool. After the design and the
deployment phase of the FESA class, the instantiation is essential to
define the amount and type of different devices, regardless of a
timing domain. PERSISTENT and FINAL data can be defined here for
single instances, or in case of global-data, for all instances. The
main function of this tool is to couple the events from the design
phase with the actual CTIM events or with an internal timer.
Defining a timing-simulation helps testing FESA classes without
connection to the real timing system. The timing-domains of the
class, version, and FEC are set when this file is loaded from or
saved to the database and need not be declared in this tree.

 3300

FFEESSAA PPRRIIMMEERR

Fig. 10: Example of a fictitious instantiation-unit provided by the FESA shell

3.4.1. Multiplexing

If a device-data field in the Design-Tool was set to
USER_PARTIALLY as multiplexing-criterion, the multiplexing branch
is available to define the depth of the device-collection. This feature
is used for optimization of the data-field depths as not all data
values for all 24 USERS are required.

3.4.2. Timing-Mapping
All logical events defined in the design part have to be coupled here
with either a dedicated timing event to be selected from combo-
boxes (CTIM) or with a timer period setting (timer).

3.4.2.1.

3.4.2.2.

CTIM
A CTIM is a string in the style of ‘timingDomain’:'name':'code'. The
user has to specify the domain dependent trigger signal to start his
action.

Timer
An infinite loop of trigger signals is generated by this internal timer.

 3311

FFEESSAA PPRRIIMMEERR

Specify the trigger period in ms. This period equals the delay time
between each trigger signal. It must be a positive integer number
(max. is 2.147e9). Setting the value to 0 suppresses triggering.

3.4.3. Timing-Simulation

The timing simulation is a standard service of the FESA
infrastructure.
Note: additional information on the timing simulation can be found
at [3]. On activation, it replaces the timing-hardware and all the
software interfaces required to synchronize the deterministic
process control (e.g. FESA RT-action) with an internal timing
system.
The main objective is to support testing the FESA application
without the real timing. This can be useful in case of missing timing-
hardware, in shutdown periods, or while debugging. Also specialties
such as evaluation of telegram-data or handling of logical-event-
groups are provided.
The real timing and the timing-simulation may be defined in
parallel, as one can easily switch between both timings by toggling
the timing-simulation on or off. They cannot operate at the same
time in parallel.
Note that the FESA Navigator (an auxiliary test environment also
available within the FESA shell) works as well in the simulation
mode.

The simulation is defined independently for each timing-domain
predefined in the class design. Available timing-domains may be
added to the simulation by a right-mouse-click on the timing-
simulation entry.

Attributes of the timing-simulation are:

enable:

enable / disable simulation mode. This switches between simulation
(ON) and real timing (OFF).

basic-period-length:

The length of the basic period in milli-seconds (default is 1200ms).
It is a global parameter of the timing simulation.

repetition:

 3322

FFEESSAA PPRRIIMMEERR

This defines how many cycles of the global simulation will be
executed.
The global simulation can be activated once (repetition=1), several
times (repetition=n), or repeated indefinitely (repetition=-1).

If one or more timing-domains were defined within the Design-Tool,
they may be configured after adding them to the tree as follows:

3.4.3.1. <Domainname>-Domain

A <domainname>-domain, for example a CPS-domain, has to be
defined and added as already described. This branch consists of two
sub-branches called super-cycle and events-sequence. Per timing-
domain there is exactly one super-cycle available, but many events-
sequences if required.

Super-cycle

A super-cycle consists of one or many cycles. The executing order
of the cycles equals the top-down order within the tree. The primary
start of the super-cycle can be delayed by setting a time in milli-
seconds to the attribute shift-delay.
To provide the best flexibility in the timing-simulation and to be as
close as possible to the real timing, every cycle within a super-cycle
is attached to an events-sequence which also is very flexible, as it
offers several event types.

Cycle

The cycle is part of a super-cycle. The main attributes to configure
the cycle are:

User

A typical telegram-group-user, such as SFTPRO, EASTA etc. has to
be selected to provide information for multiplexing the PPM-data as
in the real timing. Select one among the whole set of available
users for the timing-domain concerned.

Basic-period-multiple:

This sets the length of the cycle, expressed in numbers of basic-
periods. The duration of the basic-period-length, expressed in ms, is
specified in the timing-simulation node, e.g. setting a 5 leads to
5x1200ms=6000ms or 6s cycle-length.

 3333

FFEESSAA PPRRIIMMEERR

Events-sequence-name-ref

This refers to the event-sequence which is linked to the cycle. The
cycle does not produce the trigger events; it only defines the time-
frame being filled with an events-sequence.
Note: If you want to define a 'ZERO' cycle, you have to create and
refer to an empty event-sequence.

If you are using telegram-data and you need to extract additional
information such as particle type (PARTY) or destination (DEST), a
telegram-data branch can be added to the cycle.

Events-sequence

As already mentioned in the super-cycle description, the cycle itself
has to be linked to an events-sequence. In case no events are
required, as for the ZERO cycle, you have to create an empty
events-sequence.

One sequence can be referred by several cycles if those require the
same event types. Conversely, a set of sequences can be declared
but not used. This allows you to increase the number of test
configurations.

In the real timing mode, you define a concrete CTIM or LTIM event
for each logical event (explicit of implicit) you declared in the
Design-Tool. The specific characteristics of each event (name and
delay in particular) are programmed à priori and registered in a
database.
In the simulation mode, you have to define each event
characteristic yourself, as well as register this information within the
Instantiation-Tool directly. This allows multiple adjustments and
simplifies upstream application developments.

The events-sequence has to be named. This name is used as the
events-sequence-name-ref as a cycle attribute.

For the design of the simulated timing behavior four event types are
available:

event:

It simulates a simple CTIM or LTIM event linked with an explicit
logical-event for which mtg is specified in the design. At least one

 3344

FFEESSAA PPRRIIMMEERR

logical-event using mtg has to be designed. If not, the timing-
simulation makes no sense.
The event has to be linked to a logical-event by selecting the name
from the combo-box. In addition the delay time in milli-seconds has
to be added. This delay is the time between cycle start and
execution of the trigger.
Note: Setting the delay to a negative value means that it is works
as a pretrigger.

event-burst:

Choosing event-burst leads not only to one but to (n) trigger signals
within the given period and number of occurrences. The event burst
simulates an LTIM pulse-train linked with an explicit logical-
event/mtg specified in the design. The first event of this train is
triggered after the fixed delay from the cycle start. Then (n-1)
events are generated in regular intervals corresponding to the
specified period.
Note: Setting the delay to a negative value means that it works as
a pretrigger.

event-group:

The event-group event type has to be chosen if an implicit logical-
event-group using mtg was designed and shall be simulated. It
works like the event described above, except in addition, a sub-
name to differentiate between each events is required (sub-name
format: [timing-domain]-[index], example: LEI-01, LEI-02, PSB-01,
CPS-01, etc.).
If timing-simulation is switched on, the contents of the interrupt-
fields (required for using the logical-event-group functionality) of
the instances is changed from a CTIM event-name to this sub-name
as a placeholder.
The event is triggered after the fixed delay time to be entered in
milli-seconds, beginning from the cycle’s start.

event-group-burst:

The event-group-burst works like the event-burst. This event type
has to be linked with an implicit logical-event-group/mtg specified
in the design, and also sub-names, such as those used for the
event-groups have to be defined.

 3355

FFEESSAA PPRRIIMMEERR

3.4.4. Instances

There are three different types of instances, which can be added or
removed easily. The sub-branches of the instances are dependent
on the defined device-data fields in the design part. Whenever a
device data field is defined as FINAL or PERSISTENT, an entry in
each instance for this field is created and has to be populated. This
is also valid for the global-data, but within a different branch.
In addition all types of instances provide branches with non-editable
information, such as isMUX and timingDomain.

3.4.4.1.

3.4.4.2.

3.4.4.3.

3.4.4.4.

<Domainname>-Device-Instance

This type of instance is used in a multiplexed context within a
specific timing-domain (<DOMAIN> replaced by i.e. CPS, LEI etc.).
<Domain>-device-instances are available, when target-timing-
domains are specified in the Design-Tool. By default a set of
instances is created within the instantiation-unit. If some of these
instances are not required, they can be deleted or replace by other
types of instances.

None-<Domainname>-Device-Instance

This type of instance is not used in a multiplexed context, but within
a timing-domain.

NONE-Device-Instance

In case no global timing at all is required, this type of instance may
be chosen.

<Domainname>-Domain-Data

This branch is dedicated to populate the telegram-group-fields
specified in the Design-Tool. A right-mouse-click on the
instantiation-unit branch offers all available <Domain>-domain-data
entries. Of course this only applies when one or more target-timing-
domains are defined at design time.

 3366

FFEESSAA PPRRIIMMEERR

3.4.5. Global-Data

If a global-data field was defined as FINAL or PERSISTENT, it may
be set in this branch.

3.5. Navigation-Tool

After having completed all steps beginning from the design until the
final instantiation phase, the FESA class is ready to be tested. On
the FEC the binary is started manually or automatically while the
boot process. To get in contact with the executed binary the
Navigation-Tool can be used. This is found within the Shell or as
standalone tool on the Development-Corner website.
The Navigation-Tool provides access to all defined properties.
Dependent on the specified get-or-set-action while the design phase
the buttons get and/or set appear in the navigator window.

Working with the Navigation-Tool requires following steps:

1. Select a FEC in the Device Selection window.
2. Chose a beam target in the Cycle Selection window.
3. Select a property in the Property Selection window.

After this the navigation window will pop-up. It offers several
different viewers such as 2D-plot (see Fig. 11), tables, or text
logger and already useful data acquisition features such as printing,
data storage, zooming, etc.

The get-and-set actions can be performed manually by pressing the
equivalent buttons or by subscribing to the class which leads to
automatic and frequent viewer updates.

 3377

FFEESSAA PPRRIIMMEERR

Fig. 11: Navigation-Tool for testing purposes

3.6. Data Management / Source Code Generation

This paragraph is not essential for working with FESA. It provides
condensed background information on the data processing
principals for the interested user.

All the FESA GUIs are written in Java. Therefore it is almost
platform independent. The contents of the GUI, edited by the user
in this obvious tree structure, are stored in XML files. XML files are
human and processor readable ASCII files, also platform
independent, with a fixed structure which allows parsing for a valid
consistency of this file.
The files are stored on the one hand in so called CLOBS (character
large objects) as reference on the other hand the data is shredded
and stored in relational database tables. This provides not only
storage but also data access for other services such as the Alarm
Monitor.
Additionally they can be exported to regular XML files on the hard
disk.

 3388

FFEESSAA PPRRIIMMEERR

By executing Linux Perl scripts (Linux commands, e.g. Fesa Setup…)
the stored XML files (e.g. from the design tree) are sent to an XSLT
processor, which operates similar to a classical compiler such as
gcc. This XSLT processor transforms the contents of the XML files to
valid C++ source code with help of predefined templates.

This data flow is organized by the FESA Data Management System
(DMS). Its dependencies to the FESA packages are shown in Figure
12.

FESA DMSFESA DMS

FESA GUIFESA GUI’’ss
FESA scriptsFESA scripts

ControlsControls
ConfigurationConfiguration

DatabaseDatabase

JavaJava
DirectoryDirectory
ServiceService

Save/restore Save/restore
XMLXML.. List.List.

Restore XMLRestore XML.. List.List.

Propagate some information Propagate some information
needed by CMW.needed by CMW.

Access data from Access data from
XML previously torn XML previously torn
apart.apart.

FESA FESA AlarmAlarm
MonitorMonitor

Fig. 12: FESA Data Management System (DMS) dependencies.

 3399

FFEESSAA PPRRIIMMEERR

3.7. PLC-Interface

As FESA is dedicated to support easy equipment implementation
into the control system the use of a specific PLC interface within the
FESA Design-Tool is foreseen to fully integrate the large amount of
PLC devices.
The usage of the PLC integration is well described in the documents
“PLC integration for FESA 2.9” [5] and “PLC configuration for FESA
2.9” [6] available at the Development Notes link on the FESA
Development -Corner website.

Fig. 13: Scheme of typical PLC installations.

 4400

FFEESSAA PPRRIIMMEERR

The concept is to create first a dedicated PLC class (FPLC) which
describes the PLC device and its processes. Already at startup of a
new equipment-class-design a template for a PLC class is offered.
All necessary properties and data fields are implemented there. This
FPLC can be run separately for testing purposes and offers already
the features “status”, “settings”, “acquisition” and “configuration”.
In a second step after creating the FPLCs a special FESA application
class (FAPP) should be designed to bundle many FPLCs with same
functionality or due to other reasonable causes. This FAPP handles
the FPLCs as a master class. It offers the possibility to evaluate the
acquired data and to operate various equipment types (from
different PLCs eventually) from the operator’s point of view. The
connection between FAPP and the FPLC is organized by the design
option equipment-links (see 3.1.3). The std-service PLC has to be
set for the FAPP. Both, the FPLC and the FAPP are usual FESA
classes which have to be deployed to a FEC which handles the PLC
devices.
To configure the PLC hardware for proper FESA access an online
tool may be used to generate the device memory mapping for the
PLC side programming (only the interface part, not the data
acquisition). This tool is called “IEPLC Configuration” and is found
at:

http://ieplc-configweb.web.cern.ch/IEPLC-ConfigWeb/v2.9

Usually for Siemens PLCs the software environment Step 7 (PL7 and
Unity for Schneider PLCs) is used. In addition to the operational
software which is developed within Step 7 by the user, the output
code of the IEPLC source code has to be added to reserve the
memory space on the PLC device for FESA access.
A typical PLC setup is presented in Figure 13. The FESA classes,
FPLC and FAPP, are deployed to a FEC and several instances are
built. Access of the PLC is possible via Ethernet and the IEPLC
specific configuration. The devices which have to be controlled are
either connected directly to a PLC unit or accessed via the fieldbus,
e.g. FIPIO or Profibus.

3.7.1. PLC Requirements

In addition to the already mentioned PLC descriptions [5] and [6]
some important issues should also be listed here.

One has to take care of the vertical order of the properties within a
FPLC class design which is important for the correct mapping with
the PLC device. This is also necessary for the vertical order of
instances within the Instantiation-Tool.

 4411

http://ieplc-configweb.web.cern.ch/IEPLC-ConfigWeb/v2.9

FFEESSAA PPRRIIMMEERR

Within the PLC class the USER event which may be used for manual
triggering of the RTAction is created automatically. No additional
source code has to be implemented.

The PLC-Expert can prepare a CSV list, a simple ASCII text file, with
the correct order and parameters for the PLC mapping. This text file
is later on processed by a script called “generatePlcClass.pl” which
generates a valid design xml-file to be imported to the Design-Tool.
A typical CSV-file consists of following entries:

PLC-property-type: CFG, CMD and AQN
PLC-property-name: any valid name
IEPLC-data-types: see Chapter 9
Dimension: n x type or array size

CSV-Example:

CFG, cfg_1_r, REAL, 1
CMD, cmd_1_ba, BYTE, 3
AQN, acq_1_ca, CHAR, 1024
AQN, acq_2_ca, CHAR, 1024
…

Note: When deploying a FPLC class it is important to know that if
this class is going to be used as a stand-alone class without a
connected FAPP the deployment-option single-process in the
Deployment-Tool should be set. In the other case the option
separate-server-interface should be selected.

3.8. Alarm-Interface

FESA provides a front-end layer to the underlying LASER alarm-
system. The usage, requirements, and constraints of the Alarm
handling within FESA are well described in the document “Alarm
interface for FESA 2.9” [7] which can be found in the Development
Notes link of the Development-Corner website.

 4422

FFEESSAA PPRRIIMMEERR

4. Example FESA Class

To demonstrate, how FESA works it is helpful to process all required
steps on the basis of a real equipment device.

Note: This example shows only one of infinite possible ways of
fabricating a FESA class. It can always be done in a different way.
Not every feature of FESA is used here. This example is meant to be
a first approach.

The class can be found in the FESA class repository Version 2.9
entitled as TransferlineTrafo. The source code is stored under the
same name in the CVS repository.

4.1. The Module TRIC

The real VME device named “TRIC” [8] (TRansformer Integrated
Card) has to be implemented into the control-system using FESA.
The device is a CERN-made VME module to integrate transformer
currents. The connected transformer is installed in the transfer-line
between the PSB and the PS. The measurement principle is as
follows:

1. Receive a control event to initialize the module.
2. Receive a start event to trigger the measurement procedure.

The TRIC-output delivers finally the intensity of the proton beam in
a cycle-by-cycle mode.

Of course this is not that simple such as listed above. The module
provides a large set of properties which have to be set correctly and
the required hardware driver already exists as it was used for
developing and testing the module. The driver was prepared with
the DriverGen [9] framework. The address mapping of all registers
is organized within the driver. To get in contact with the hardware
via C++ a device-handle had to be implemented. This piece of
source code is added in the addendum. The VME crate also hosts a
RIO3 PPC4 processor and a TG8 timing module.

Note: Hardware tests should be done in a stand-alone situation
outside of FESA.

The measurement procedure shown in Fig.13 requires the setting of
different time gates. This is a typical user-input (set).

 4433

FFEESSAA PPRRIIMMEERR

The gate t2 (beam signal is measured) as an example starts t1µs
(length of t1) after the acquisition-trigger and lasts t2µs.

Fig. 14: TRIC-measurement procedure. All time steps t1-t11 and the calibration voltage
(Ucal) have to be set. t1 - Measurement gate delay (from trigger), t2 - Measurement gate
length, t3 - Measurement offset delay, t4 - Calibration gate delay (from the end of
measurement gate), t5 - Calibration pulse length, t6 – Measurement offset gate length
(the same as t2), t7 - Calibration pulse delay (from the end of measurement gate), t8 -
Calibration gate length, t9 - Calibration offset delay, t10 - Calibration offset gate length
(the same as t8), t11 - Test auto-run timer period, Ucal - High Voltage value

Figure 14 shows that after a trigger signal has occurred the beam
intensity and afterwards the offset signal without beam is measured
(t1-t6). The same is done with an internal calibration pulse and its
offset (t8-t10).
After this procedure all data is stored in registers which have to be
read out, calculated, and given out by your FESA class.

Module specialties such as the internal calibration, offset correction,
and HV settings are omitted, as they are not required for learning
FESA.

 4444

FFEESSAA PPRRIIMMEERR

4.2. The Example Design

A design is not a fixed procedural method. You may switch from the
interface part to the data part via actions back to interface and so
on, as you whish and as it is required.

The relevant steps for a valid design may look like as follows:

After opening a new design
within the shell or Design-Tool,
the tree should look like this and
has to be populated now.
Defining the ownership and the
editor is simple but mandatory
for security reasons.
We have to think about the
properties which have to be
accessed by an operator to get
or set data. The final readout of
acquired data is such a property.

Tree 3: All required interfaces

Therefore we add a simple
property DataReadout and define
several data-field-ref-items for all
necessary data fields.
As we can only read the acquired
data the default-action get is
defined.

Tree 4: The property DataReadout

 4455

FFEESSAA PPRRIIMMEERR

Control (read/write) and status (read only) registers are used very
often. The operator can change the behavior of the hardware by
switching bits of a control register. In addition he can read back his

settings. The status register may be
used for observation of a running
process, e.g. a bit is set to 1, when a
measurement has finished. In our
design it looks like shown in Tree 5.

To provide a read-and-write access
to the control register the default-
actions get-and-set are chosen. The
status register is limited to a read
access.

Tree 5: Control and status register

As already mentioned, the
behavior of the measurement
procedure is described by time
settings. We have to take care
of that operator inputs in this
case are done in seconds or
micro-seconds, which can be
float values. The hardware
register instead accepts only
long words. A conversion of
these values is done in the
C++ code while reading and
writing to the hardware
(RTAction).
To accept more sophisticated
variables the property type
complex is used (see Tree 6).
Doing this requires also
specifying the multiplexing-
criterion (here NONE) and the
variable type (float).
Additional information can be
added such as a short
description or the used
dimension (unit) and order of
magnitude. Note that these
settings are only for
documentation.

 Tree 6: Complex properties.

 4466

FFEESSAA PPRRIIMMEERR

For this project we have to use some constant values which are
necessary for calculations such as from a time setting to a long
word. As the board is synchronized with an onboard quartz oscillator
with a frequency of 48 MHz, the resulting step size for time
conversions is 20.083333ns. This value is used for all calculations
and can be provided by defining it in the branch custom-types as a
constant. See Tree 7, CLOCK_CYCLE_TIME_NS.

For constant variables
it is recommended to
use custom-types as
they can be changed
easily for all instances
in one step, if required.
Very helpful is the use
of the bit-enum-xxbits
types, as every bit of a
word can be defined by
name and later touched
separately in the GUI
or used in the source
code.

Tree 7: List of custom-types.

The heart of the design is
the data branch where all
possible data fields have to
be defined. Whenever a
value has to be delivered to
or received from either the
operator or the hardware, it
has to be defined as a data
field. In addition, the
multiplexing-criterion, the
data type, and its
persistency have to be
defined. A part of the data
field list is shown in Tree 8.
Note that the custom-type
STATE_REG (Tree 7) is
referenced by the field
stateReg (Tree 8) as the
status register is not just a
long or float but a bit-
enum.

Tree 8: List of data fields.

 4477

FFEESSAA PPRRIIMMEERR

In Tree 9 the actions, events, scheduling, and target-timing-
domains are listed. Already in Tree 6 the server-actions such as
getTimeSetting were referenced. In the actions branch they are
declared. Two rt-actions are defined, one to initialize and prepare
the hardware module at an earlier event (controlRTAction), and
another one to execute the measurement procedure and the
intensity calculation (acqRTAction). As the acquired data has to be
delivered to the operator, the property DataReadout is notified after
the RTAction is processed.
This measurement is multiplexed
which means that beam to
diverse targets may have
different settings per cycle and
user.
To receive accelerator-dependant
triggers the mtg as an event-
source was chosen. The logical-
event-group was selected, to be
prepared, if several transformers
(instances) have to be triggered
on the same event executing the
same RTAction. Therefore
interrupt-fields are required which
are defined in the scheduling
branch as a device-group-
implicit-event-ref.
Finally the target-timing-domain
has to be selected. This can be
more than one. The final timing-
domain is selected within the
Instantiation-Tool per instance.
If the design is valid, it can be
saved and the code production
started using the Linux utilities.
A design can be changed any
time, for example adding the
error and alarm handling if
required. Of course the source
code is updated, without
destroying already written code.

Tree 9: Actions, events, scheduling and
target-timing-domain settings.

 4488

FFEESSAA PPRRIIMMEERR

4.3. Source Code Production and Coding

Once the design is valid and stored, you have to switch to the Linux
world. Create a new directory for your FESA classes and change to
this directory.
Type “Fesa Setup MyClassName 0 scratch” and press enter. The
“Fesa” script will install a new directory structure and creates source
code. The most relevant source code rudiment for own coding is
found in the RT and SERVER subdirectories. The .cpp files of the
actions have the same name defined in the design.

Note: The complete programming part cannot be explained here.
Only the approach is documented. In the HowTo part of this
document you will find examples for useful methods.

To read from and write to the hardware usually memspace has to
be declared. The complete register mapping of a VME module has to
be known. If more than one module of the same type is installed in
a crate, each has to be identified correctly (LUN, CH). Usually a
driver is required, where all these mappings are organized. This
driver is compiled with FESA by including (#include) it. In addition,
a device handler accessing the correct module is required. The
sample code for such a device handler for the TRIC module is added
in the addendum.

4.3.1. Server Action

To work with the module all settings have to be entered by an
operator. These are in our example timing settings and high voltage
settings. Therefore some Server Actions were designed and
generated, which have to be filled with code. The sense behind is,
that the data is copied from the user input to the data field or vice
versa by pressing a get or set in the Navigator (GUI).

Example of a set action (copy from input to data field):

float timer_period = this->data.testTimerPeriod.get();
 pWorkingDevice->testTimerPeriodSet.set(timer_period, pContext);

cout << "Set TimerPeriod: " << pWorkingDevice>testTimerPeriodSet.get(pContext) << endl;

As all values are multiplexed, the MultiplexingContext (here
pContext) has to be added. In case you switch back to non-
multiplexed mode for your property (e.g. testTimerPeriod) this
additional variable does not disturb.

 4499

FFEESSAA PPRRIIMMEERR

A Server Action is usually (it can) not connected to the timing and
can be executed anytime.

4.3.2. RT Action

Our example uses two RTActions: One for updating all settings
before the real measurement procedure is started and one to read
the acquired data and to calculate the beam intensity. The
measurement is not started by an RTAction. Therefore a hardware
trigger input on the module is used, which executes the automatic
onboard procedure. The RTAction only checks at the beginning, if
the measurement has finished before making the readout.

Example of a read action from the TRIC hardware:

measResLo = ReadTricRegister(handle,MEAS_LO_I_RES_ID);
measResHi = ReadTricRegister(handle,MEAS_HI_I_RES_ID);

 pDev->measLowIntResult.set(measResLo, pContext);
 pDev->measHighIntResult.set(measResHi, pContext);

The function ReadTricRegister (see source code in the addendum)
writes a register contents from the module to the variable
measResLo. After this, it is written to the corresponding data field in
the device collection.

Example of a write action to the TRIC hardware:

// Set Measurement Gate Delay (from Trigger to MeasGate)

value = (int)fabs((pDev>measGateDelaySet.get(pContext))/CLOCK_CYCLE_TIME_NS);

cout << "MeasGateDelay : reg[" <<MEAS_GATE_DEL_ID << "] = "<< value << endl;

WriteTricRegister(handle,MEAS_GATE_DEL_ID, value);

Of interest can be the handling and use of bit-enum types. In the
example one dedicated bit of the config register has to be cleared
(set to 0) to update a setting. If the bit is 1, then it has to be
cleared. If it is 0, it has to be switched to 1 and back to 0 to
perform the required update.
For this following code may be used:

 5500

FFEESSAA PPRRIIMMEERR

Example of a bit-wise toggle of the config register of the TRIC
module:

// toggle bit D8 of config register

CONFIG_REG::CONFIG_REG flag = (CONFIG_REG::CONFIG_REG)pDev->configReg.get(pContext);

 if (flag & CONFIG_REG::MeasFlagClear){
 (long) flag &= ~CONFIG_REG::MeasFlagClear;
 WriteTricRegister(handle, CONFIG_REG_ID,(int)flag);

cout << "*** Cleared Bit D8: " << flag <<
endl;

 }
 else {
 (long) flag |= CONFIG_REG::MeasFlagClear;
 WriteTricRegister(handle, CONFIG_REG_ID, (int)flag);
 long) flag &= ~CONFIG_REG::MeasFlagClear;
 WriteTricRegister(handle, CONFIG_REG_ID, (int)flag);

cout << "***************************Toggle bit D8 from 0 to 1 to 0 : " << flag <<
endl;
 }

4.3.3. The SpecificInit Class

In our case the file is called TransferlineTrafoRealtime.cpp and it is
also stored in the RT directory. This file is important as it hosts the
specificInit class. This class may be used to perform only one time
specific source code, for example writing a default value to the
module, to assure that it does not start with wrong data.

Example of a specificInit usage:

TransferlineTrafoRT::specificInit(int argc, char ** argv) {

vector<TransferlineTrafoDevice*>* pDevCol=TransferlineTrafoDevice::getDeviceCollection();
 for (unsigned int i=0; i < pDevCol->size(); i++){
 TransferlineTrafoDevice * pDev = (*pDevCol)[i];

 HANDLE handle = devHandle::getDevHandle(pDev->name.get());

 int config_value = 0x193; //Default startup value of Config register

 WriteTricRegister(handle,CONFIG_REG_ID, config_value);

cout<< hex << " TransferlineTrafoRT::specificInit is called, setting ControlRegister! "<<
config_value << endl;
 }
}

To perform the WriteTricRegister function, the device handler has to
be defined here as well.

Anytime while being in the coding phase a compilation may be
performed by typing “make”. If you are in a subfolder (e.g. RT) only

 5511

FFEESSAA PPRRIIMMEERR

these files are compiled. If you switch to the main folder of your
version (v0), you are able to compile the whole class.
To continue with the FESA class you have to perform different Linux
commands, such as “Synchronize + make” in case you have also
made changes to the design or “Commit” to update the CVS
repository or “Deliver” to prepare the binaries being deployed to a
FEC. Please read also [10].

4.4. Deployment of the Example Class

To prepare the designated FEC for the use of the FESA class the
Deployment-Tool has to be started. Select “Retrieve” and select
from the FEC. The appearing tree shows all already to this FEC
deployed classes. A right-mouse-click on the FEC-fesa-configuration
branch allows adding a new class. As shown in Figure 15 this is
already done for the FEC named dpsbbdi2.

Fig. 15: Deployment-Tool with installed TransferlineTrafo device class

As deployment option the “single-process” was chosen as this is
sufficient for the TransferlineTrafo class. The startup type was set to

 5522

FFEESSAA PPRRIIMMEERR

“manual” due to the actual development status of this class which is
not used in permanent operation at this time. Press store when you
have finished all settings. Now you can switch to the Linux and
enter the TEST directory of the class and execute “make”.

4.5. Instantiation of the Example Class

Within the Instantiation-
Tool the final settings
have to be entered. Load
first the FESA class by
selecting “Retrieve”. The
amount and type of
instances with all timing
settings (event, domain,
etc.) and startup values
for PERSISTENT and
FINAL data has to be
defined. New instances
are added by doing a
right-mouse-click on the
instantiation-unit branch.
Press store when you
have finished all settings.

The last step is to switch
to Linux into the TEST
directory and perform
the Fesa Instantiate
command. This command
must be executed every
time changes were made
to the instantiation file.
Login on the FEC, e.g.

ree 10: Instantiation-Tool.

ssh dpsbbdi2, switch to
the TEST directory and
execute the binary
manually.

T

 5533

FFEESSAA PPRRIIMMEERR

4.6. Testing of the Example Class

To connect to the running binary, the Navigation-Tool has to be
opened. This can be done directly from the shell where the Tric
class is already available.

Fig. 16: Navigation-Tool showing all read-out properties (read-only)

Fig. 17: Navigation-Tool showing all timing settings with read-and-write access

 5544

FFEESSAA PPRRIIMMEERR

5. Files in Project

 is installed locally in your Linux
nvironment, a directory-tree containing a set of source code files is

irectory is named like the FESA class.
elow this the class contents is placed in a folder

ted automatically are not foreseen to be
dited except the RT and Server Action files. The RT, SERVER and

.1. Common

sed to store user-created source code, i.e. own
lasses and functions. If these self-created files shall be linked to

.2. CVS

 not of interest.

.3. GENERATED_CODE

nerated files, mainly .cpp and .h
les. Most of the definitions and settings made in the Design-Tool

ontains the class <class-name>GlobalStore with declarations for
l-data in the Design-Tool.

Whenever a FESA class
e
created.

The top-d
B
labeled with the version number. In this folder
(here v0) you will find also the main Makefile for
the whole class. In every directory a CVS folder
appears which is necessary for the CVS
archiving procedure. Its data is of no use for the
FESA class itself

Usually all the files crea
e
TEST folder are containing a so called Make.specific file, which is
used to add custom .cpp or .h-files or to add alternative include
directories. These Make.specific settings are also interpreted as
flags beneath the Makefile by the make command.

5

This folder can be u
c
your FESA class, the adequate names and paths have to be added
into the Make.specific file as already mentioned.

5

This folder is

5

This folder contains the most ge
fi
are realized here in class declarations and definitions.

<class-name>GlobalStore.h
C
all data fields defined in globa

 5555

FFEESSAA PPRRIIMMEERR

<class-name>Device.cpp
The fault-fields of the class are processed here; it provides a helper

nction for computing standard status values.

fined in the device-
ata are declared here.

is routine includes the <class-name>-
omainStore.h file.

e DomainStore-class. All fields defined in the
omain-data, such as telegram-group-fields are declared here.

ured
ere and the ServerActionFactory is instantiated.

ated to properties
nd server-actions.

ent configuration, instantiation of the
TActionFactory.

r the count/config variables related to RTActions
nd events-sources, and for std-services.

 class.

tion.h
 can be used to study

oding of data transactions from the device to the data class and

clarations.

fu

<class-name>Device.h
This file contains the device-class. All fields de
d

<class-name>DomainStore.cpp
Usually not used. Th
D

<class-name>DomainStore.h
This file contains th
d

<class-name>EquipmentDefaultInterface.cpp
Interface handling, all properties and Server Actions are config
h

<class-name>EquipmentDefaultInterface.h
Declaration-file for the count/config variables rel
a

<class-name>EquipmentDefaultRealtime.cpp
RTAction and ev
R

<class-name>EquipmentDefaultRealtime.h
Declaration-file fo
a

<class-name>EventSourceFactory.cpp
Definition of the createCustomEventSource

<class-name>EventSourceFactory.h
Definition of the EventSourceFactpry class.

<class-name>GetSetDefaultServerAc
All default actions are realized here. This
c
vice versa.

<class-name>TypeDefinition.cpp
Some rda de

<class-name>TypeDefinition.h

 5566

FFEESSAA PPRRIIMMEERR

Definitions of all data classes, especially for the custom-types. For
num definitions the namespaces are declared here.

cpp

e Constructor and Destructor of the <class-name>RT
lass. Most important is the method specificInit, in which initial

.e. open sockets or hardware handles),

n.

face.cpp
onstructor and Destructor of the <class-

ame>Interace class. Most important is the method specificInit, in
be run once (i.e. open sockets or

e

<class-name>ServerActionFactory.cpp
ServerActionFactory definition

<class-name>ServerActionFactory.h
ServerActionFactory declaration

<class-name>RealtimeActionFactory.
RTActionFactory definition

<class-name>RealtimeActionFactory.h
RTActionFactory declaration

FesaCompilationInfo.cpp
Version information

5.4. RT

<class-name>Realtime.cpp
Contains th
c
functions can be run once (i
before the RT actions are executed.

<class-name>Realtime.h
The <class-name>RT class declaratio

5.5. SERVER

<class-name>Inter
Contains the C
n
which initial functions can
hardware handles), before Server Actions are executed.
This can be also done in a separate custom initializing Server Action
with the advantage, that a user can start this action manually.

<class-name>Interface.h
The <class-name>Interface class declaration.

 5577

FFEESSAA PPRRIIMMEERR

5.6. TEST

DeviceData.xml
tores settings made within the instantiation unit.

 case data fields are defined as PERSISTENT, all the values, also

andles the deployment options set within the deployment unit
parate-server-split etc.

. Howto…..

.1. Use the FAQ

nt-Corner website a link to the FAQ pages is
stalled. On this page some complex issues are explained,

ow can I compile and link my custom hardware library for test
purposes?

 configure an operational FEC to link equipment-classes

against a specific hardware library?

 FEC to start equipment-classes
automatically upon reboot?

 e arguments to a FESA executable?

ll I
define a simple or a complex property?

 a group of tightly-

coupled classes relying on equipment-links?

 ?

tom-event-source?

<class-name>
S

<class-name>PersistentData.xml
In
for all 24 users, are stored here.
Note: To clean these values, this file may be deleted any time.

deploy<class-name>.cpp
H
such as single-process or se

6

6

On the FESA Developme
in
exemplified with code examples. Following subjects are treated
there:

 H

How can I

How can I configure an operational

How can I pass command-lin

 I want to implement a property with a custom server action. Sha

How do I setup the local directory structure for

Why my custom-event source does not work

 How can I generate timing-context from my cus

 Does FESA puts any restriction on the use of the std library?

 5588

FFEESSAA PPRRIIMMEERR

 How can I clean up a FESA class-version?

 How can I force a FESA version from the FEC's makefile?

p in the
Navigator or applications can't see them.

http:/ development/FAQ.htm

 The device instances I've just created don't show-u

/project-fesa.web.cern.ch/project-fesa/

6.2. Use BitEnum

bits custom types is sometimes helpful, if
pecial bits have to be named and accessed. They are declared in a

.3. Trigger an RTAction on User request

 <TrigIncrementCounter.h>
 <TestUserEventDevice.h>

h>

entCounter(const string& name,
onConfig& serverActCfg) :

ce,

et(pContext);

Using bit-enum-16Bits/32
s
separate namespace to prevent mismatch with other bit-enums. It
may happen easily that two bit-enums use the same name for a bit
such as ON, OFF, ERROR, etc. so this way of different namespaces
was chosen. A short example of how to use it is given in Chapter
4.3.2.

6

from TestUserEvent Class Server Action

#include
#include
#include <TestUserEventGlobalStore.

#include "TestUserEventInterface.h"

ing namespace TestUserEvent; us

TrigIncrementCounter::TrigIncrem
stractServerAction::ServerActiAb

 ServerAction<TestUserEventGlobalStore, TestUserEventDevi
TrigIncrementCounter_DataType >(name, serverActCfg){}

void TrigIncrementCounter::execute(RequestEvent * pEv){

 MultiplexingContext* pContext ;
 pContext = pEv->getMultiplexingContext();

 // to access an array or array2D field:

// Type* pLocalVar= pWorkingDevice->field.g
 // to access a scalr field:
 // Type localVar = pWorkingDevice->field.get(pContext);

 TestUserEventInterface * pClassIntf =

 5599

FFEESSAA PPRRIIMMEERR

 dynamic_cast<TestUserEventInterface

UserEvent evt = UserTrigIncCounter;

 string payload;
d.get() == CounterID::COUNTER_1)

e::CALIBRATION << " " << frequency <<

Store->startCalib.set(true);

pClassIntf->fireUserEvent(evt, payload); // no

6.4. Create a DeviceCollection

If you are in need to access a DeviceCollection in a part where it is

SpecificInit:

ctor<TransferlineTrafoDevice*>*pDevCol=TransferlineTrafoDevice::getDevice

igned int i=0; i < pDevCol->size(); i++){

dle = devHandle::getDevHandle(pDev->name.get());

*>(AbstractEquipmentInterface::getEqpIntfFromClassName("TestUserEvent
"));
 // compile-time check

 if (data.counterI
 payload = "0";
 else if (data.counterId.get() == CounterID::COUNTER_2)
 payload = "1";

 int frequency = (int)data.frequency.get(); //

// int count = (int)data.count.get();
// ostringstream os;
// os << UserTrigActionTyp
" " << count;
// pGlobal

multiplexing-criterion is inherit

}

not provided, e.g. in the specificInit function of the <classname>
Realtime.cpp file then you may operate like in the given example
(extract of example in 4.3.3):

ve
Collection();
 for (uns
 TransferlineTrafoDevice * pDev = (*pDevCol)[i];

 HANDLE han
 …

 6600

FFEESSAA PPRRIIMMEERR

7. References

[1] FESA Essentials
 http://project-fesa.web.cern.ch/project-fesa/development/essentials.htm

[2] Guidelines and conventions for defining interfaces of equipment developed using

FESA, 15.06.2005
https://edms.cern.ch/file/581892/1.1/LeirPropertyGuildelines-final-1.0.1.pdf

[3] Description of the FESA Timing Simulation, Development Notes:

http://project-
fesa.web.cern.ch/project%2Dfesa/binaries/documents/TimingSimulationEssentials.pdf

[4] FEC startup sequence configuration manual
 http://project-fesa.web.cern.ch/project%2Dfesa/binaries/documents/FesaFecStartup.pdf

[5] PLC integration for FESA 2.9

http://project-fesa.web.cern.ch/project-fesa/binaries/documents/PLCintegrationFS.pdf

[6] PLC configuration for FESA 2.9

http://project-fesa.web.cern.ch/project-fesa/binaries/documents/HowToIeplc.pdf

[7] Alarm interface for FESA 2.9
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/AlarmInterfaceFS.pdf

[8] TRIC module: Developed by Grzegorz Kasprowicz and David Belohrad, AB-BI.

[9] DriverGen: a framework to prepare hardware drivers automatically. Contact: Yury

Georgievskiy and Alain Gagnaire, AB-CO-FE

[10] FESA Linux Utilities Description

http://project-fesa.web.cern.ch/project-fesa/development/fesaLinuxUtilities.htm

 6611

https://edms.cern.ch/file/581892/1.1/LeirPropertyGuildelines-final-1.0.1.pdf
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/TimingSimulationEssentials.pdf
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/TimingSimulationEssentials.pdf
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/FesaFecStartup.pdf
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/PLCintegrationFS.pdf
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/HowToIeplc.pdf
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/AlarmInterfaceFS.pdf
http://project-fesa.web.cern.ch/project-fesa/development/fesaLinuxUtilities.htm

FFEESSAA PPRRIIMMEERR

8. Glossary

A.
Actions: Design branch, specify RTAction and PLC-RTAction for triggered,
event driven actions or Server Action for timing independent get/set
operations.

B.
Branch: sub-group or part of the design tree.

C.
Concurrency-Layer: Scheduling option to execute several instances of an
RTAction in parallel.

Concurrent: Flag within a scheduling-unit to use the concurrency-layer

CTIM: Central Timing Event, distributed timing all over the accelerator
complex

CSV: Comma separated value, an ASCII list of values ordered in columns,
separated by commas or semicolons.

CVS: Concurrent Versions System, a version control and backup system
for large software developments

D.
Deployment: To deploy a FESA class means preparing the FEC and
copying the class to it.

Deployment-Tool: A Java application provided on the Development
Corner website as stand-alone tool. It is also included in the “Shell” on the
same website.

Design: The user must describe his new equipment interface, internal
structures and real-time behavior. This process is called “design” using the
Design-Tool.

Design-Tool: A Java application provided on the Development Corner
website as stand-alone tool. It is also included in the “Shell” on the same
website.

Developer: in most cases the FESA user, but also possible the FESA
developer, who takes care of the FESA itself. See User or Equipment-
Specialist.

Device: The software abstraction of an underlying hardware device. The
primary role of a FESA equipment class is to ensure that the hardware
device on one hand, and its software counterpart (device) on the other
hand, continuously reflect each other's state. Device is also used to
describe the instance of the equipment class. Also called equipment-
software component.

Device Collection: A class that holds all instances of your equipment
software, it provides the sum (deviceCollection.size()) of all instances and
the actual instance number for the device loop (deviceCollection[i]).

 6622

FFEESSAA PPRRIIMMEERR

DMS: FESA Data Management System, for data handling between FESA,
the database, the scripts and XML storage.

DSC: Device Stub Controller, the unit of a mainframe (VME, cPCI, etc.)
and an inserted CPU board.

E.
Equipment-software component: the FESA project, see Device

Equipment-Specialist: see User.

F.
FAPP: Master FESA class (application part) for PLC classes.

FEC: Front End Computer (also known as DSC). The destination for
deployed FESA classes.

FESA: Front-end software architecture

Field: An object that contains specific device-data (input, output,
parameter or state-variable). They can be multiplexed with respect to
some pre-defined criterion (e.g. a specific user or particle-type) and are
associated with some persistency attributes. Field naming is valid within a
particular device's scope.

Final: see Persistency

FPLC: FESA PLC class (in the Design-Tool).

G.
GM: General Module, forerunner of FESA framework.

H. -
I.

IEPLC: Protocol and client library for PLC communication. Required for
FESA-PLC connection.

Instantiation: On a FEC several instances of a class may be defined.
Example: one FEC hosts several channels for current-transformers, which
are installed in different timing-domains. For all these the settings can be
different. Every BCT gets its own instance with its own settings. The
settings are done in the Instantiation-Tool.

Instantiation-Tool: A Java application provided on the Development
Corner website as stand-alone tool. It is also included in the “Shell” on the
same website.

it-Field: Interrupt field for logical-event-groups, belongs to the device-
data fields.

J. -
K. -
L. Line: Targets or users like SFTPRO, EASTA, ZERO etc.

Logical Event Group: Event type to organize RTAction triggers for
separate instances.

 6633

FFEESSAA PPRRIIMMEERR

LTIM: Local timing events, selfmade timing logic, like bursts etc.

M.
Multiplexing: The accelerator complex is a resource shared by different
users. Sharing is achieved by a time-multiplexing scheme (a.k.a PPM)
whereby users are allocated specific time-slots during which they are
somehow granted ownership of the accelerator's sensors and actuators. By
extension, this multiplexing scheme may accommodate several
multiplexing dimensions with respect to which settings (resp. acquisitions)
of actuators (resp. sensors) are associated with a particular usage context.
For instance, the settings of a bending-magnet may differ according to the
type of particle the beam is made-of, or according to the destination at
which it is targeted.

MultiplexingContext: within your code this is used as a parameter
passed to a function which is multiplexed. It provides the actual line.

N.
Navigator: an auxiliary test environment available within the FESA shell.
All designed properties are accessible, especially within a timing-context, if
defined. Data output can be visualized (graph, table, etc.). See
Navigation-Tool.

Navigation-Tool: A Java application provided on the Development Corner
website as stand-alone tool. It is also included in the “Shell” on the same
website. See Navigator.

O. Operator: Person in charge of beam and accelerator control, working in
the CCC, Cern control center. He is a user of the GUIs on the upmost tier
of the control system.

P.
Payload: standard name for a data package which can transport values,
strings, objects, etc. from class to class or Server Action to RTAction and
so on.

Persistency: a data field must be specified as VOLATILE, PERSISTENT, or
FINAL.
Volatile means you have to initialize your field value at startup, e.g. in the
Instantiation-Tool or in specificInit (RT folder,
DeviceClassNameRealtime.cpp) function. PERSISTENT means you only
initialize the field once, and then the last used value is stored in a file
called “DeviceClassNamePersistentData.xml” for all instances. Final means
once set treats a given value as a constant.

Persistent: see Persistency

PLC: Programmable Logic Controller, a small computer used for
automation of industrial processes, often used in harsh environments. Also
known as SPS (the German acronym).

PLC-RTAction: see Actions

PLS: Program Line Sequencer, Syntax: timing-domain.groups.line,
example:
PSB.USER.SFTPRO

PPM: Pulse-to-pulse modulation. Every pulse is a cycle which can have

 6644

FFEESSAA PPRRIIMMEERR

different settings.

Property: The standard-form of a service published by a FESA equipment
class. A property has a name, a type and can be accessed in get-or-set
mode. Invocation of a property implies passing its subject (a device name)
as well as its context (a timing selector) to the equipment class.

Q. -
R.

Real timing: The global accelerator timing based on CTIM and LTIM
events. The alternative can be the timing-simulation within the
Instantiation-Tool.

Retrofit: A procedure to update a FESA class from an older to a newer
FESA version. Usually this can be done by using script commands.

RPC: Remote procedure call, a kind of remote method invocation from one
computer to another.

RTAction: see Actions

S.
Selection-criterion: An option within the scheduling-unit to filter
instances with equal criteria, can be used in combination with
concurrency-layer.

Server Action: see Actions

T.
TGM: telegram data within the timing-event.

Timing Domain: Each machine is operating in a special time domain. The
available time-domains are: CPS, PSB, ADE, LEI, SPS, SCT and
LHC.

Timing-Simulation: this test function is provided by the Instantiation-
Tool, in case no real timing is available.

Tree: The graphical Java tools to design, deploy, or instantiate FESA
classes use trees with branches and sub-branches which have to be filled
with life.

U.
User: in most times the person in charge of installing a device in FESA,
but also the beam targets or lines such as SFTPRO, ZERO or EASTA are
called users (24 Users max.). Also, a timing-domain such as LHC or LEI is
sometimes called user. Be careful and watch the context where “user” is
used.

V.
Volatile: see Persistency

W. -
X. -

Y. -
Z. -

 6655

FFEESSAA PPRRIIMMEERR

9. Data Types

FESA data-types are currently restricted to the ones supported by JAVA. These
are:

Scalar Types Uni-dimensional array Types Bi-dimensional array Types

bool bool bool

byte short byte

short long short

long long long long

long long float float

float double double

double string string

In some cases the type definitions for IEPLC, PLCs, C++, and JAVA are different
and have to be converted by the system. The differences are listed here:

IEPLC
Types

SCHNEIDER
PL7

SCHNEIDER
Unity

SIEMENS
SIMATIC

bit
size

C/C++
Types

JAVA
Types

CHAR WORD WORD Yes 8 char char[…]

BYTE Yes Yes Yes 8 unsigned char short

WORD Yes Yes Yes 16 unsigned short long

DWORD Yes Yes Yes 32 unsigned long long long

INT WORD Yes Yes 16 short short

DINT DWORD Yes Yes 32 long long

REAL Yes Yes Yes 32 float float

DT* Yes Yes Yes 64 double double

*DT is equivalent to an 8 byte array (64 bits) used to format the date and time.

 6666

FFEESSAA PPRRIIMMEERR

10. Table of Figures

Fig. 1: FESA main page...7
Fig. 2: Development Corner...8
Fig. 3: Schematic overview of the FESA development workflow.........................9
Fig. 4: Screenshot of the Design-Tool within the “Shell”................................. 10
Fig. 5: Visualization of the device data field functionality................................ 16
Fig. 6: Differences between Default, Custom and RTAction............................. 19
Fig. 7: Exemplary structure of a logical-event-group definition 23
Fig. 8: Exemplary trigger sequence... 24
Fig. 9: Screenshot of the Deployment-Tool (Shell version) 29
Fig. 10: Example of a fictitious instantiation-unit provided by the FESA shell 31
Fig. 11: Navigation-Tool for testing purposes ... 38
Fig. 12: FESA Data Management System (DMS) dependencies........................ 39
Fig. 13: Scheme of typical PLC installations. .. 40
Fig. 14: TRIC-measurement procedure.. 44
Fig. 15: Deployment-Tool with installed TransferlineTrafo device class 52
Fig. 16: Navigation-Tool showing all read-out properties (read-only) 54
Fig. 17: Navigation-Tool showing all timing settings with read-and-write access 54

 6677

FFEESSAA PPRRIIMMEERR

11. Addendum

11.1. Example source code for the TRIC module

Additional code for the device access called devHandle.cpp and devHandle.h
based on the TRIC-module driver.

#include <devHandle.h>
#include <TransferlineTrafoDevice.h>
#include <FesaException.h>

using namespace TransferlineTrafo;

devHandle *devHandle::pSingleInstance=0;

devHandle::devHandle(){

 access_mode = IOCTL;

 vector<TransferlineTrafoDevice*>* pDevCol =
TransferlineTrafoDevice::getDeviceCollection();
 char *modName =(char *)TransferlineTrafoDevice::pGlobalStore->integratorModName.get();
 handle = new HANDLE[pDevCol->size()];
 for (unsigned int i=0; i< pDevCol->size(); i++) {
 int lun=(*pDevCol)[i]->hw1Lun.get();
 int chanN=(*pDevCol)[i]->hw1Ch.get();
 handle[i] = DaEnableAccess(modName, access_mode, lun, chanN);
 }
}
HANDLE devHandle::getDevHandle(const string &devName) {
 if (pSingleInstance == 0)
 pSingleInstance = new devHandle();
 vector<TransferlineTrafoDevice*>* pDevCol =
TransferlineTrafoDevice::getDeviceCollection();
 for (unsigned int i=0; i< pDevCol->size(); i++) {
 if (!strcmp((*pDevCol)[i]->name.get(),(const char *)devName.c_str()))
 return pSingleInstance->handle[i];
 }
 throw FesaBadParameter("TransferlineTrafo: ",-1,"Bad device Name");
}

devHandle.cpp

#ifndef _TransferlineTrafo_devHandle_H_
#define _TransferlineTrafo_devHandle_H_

#include <fesa/Fesa.h>
#include "TransferlineTrafoDevice.h"
#include "TransferlineTrafoGlobalStore.h"
extern "C" {
#include "Tricinclude/TricRegId.h"
#include "VMEinclude/DrvrAccess.h"
}
namespace TransferlineTrafo {

class devHandle {
 public:
 devHandle ();
 static HANDLE getDevHandle(const string &devName);
 private:
 static devHandle *pSingleInstance;
 HANDLE *handle; /* library handle */
 METHOD access_mode;
} ;
}
#endif

devHandle.h

 6688

FFEESSAA PPRRIIMMEERR

Definition and declaration of helpful functions for read and write actions to the
hardware:

#include <devHandle.h>
#include <TransferlineTrafoDevice.h>
#include <FesaException.h>
#include "measFunc.h"

using namespace TransferlineTrafo;

int TransferlineTrafo::ReadTricRegister(HANDLE handle, int regid){

 int nmemb, elSize, retCode, value;

 nmemb = DaGetRegDepth(handle, regid); //MEAS_LO_I_RES_ID = MEAS_HI_I_RES_ID
 elSize = DaGetRegSize(handle, regid);
 retCode = DaGetRegister(handle, regid, &value, (elSize*nmemb));
 if (retCode <= 0)
 throw FesaBadParameter("TransferlineTrafo: ",-1,"Bad device Name");

 return(value);

}

int TransferlineTrafo::WriteTricRegister(HANDLE handle, int regid, int &value){

 int elSize, retCode;

 elSize = DaGetRegSize(handle, regid);
 DaSetRegister(handle,regid,&value,elSize);
 if (retCode <= 0)
 throw FesaBadParameter("TransferlineTrafo: ",-1,"Bad device Name");

 return 0;
}

measFunc.cpp

#ifndef _TransferlineTrafo_measFunc_H_
#define _TransferlineTrafo_measFunc_H_

#include <fesa/Fesa.h>
#include "TransferlineTrafoDevice.h"
#include "TransferlineTrafoGlobalStore.h"
extern "C" {
#include "Tricinclude/TricRegId.h"
#include "VMEinclude/DrvrAccess.h"
}

namespace TransferlineTrafo {

 int ReadTricRegister(HANDLE, int);
 int WriteTricRegister(HANDLE handle, int regid, int &value);
}
#endif

measFunc.h

 6699

FFEESSAA PPRRIIMMEERR

The source code files above have to be linked to the FESA device
class by adding them into a make.specific file.

FESA framework June 2004.

specific sources (.c file)
SPECIFIC_CSRCS =
specific headers (.h file)
SPECIFIC_CSRCSH =
specific sources (.cpp file)
SPECIFIC_CLSRCS = measFunc.cpp devHandle.cpp
specific headers (.h file)
SPECIFIC_CLSRCSH = measFunc.h devHandle.h
specific path for include files (-I/...)
SPECIFIC_CXXFLAGS =
specific library paths
SPECIFIC_LIBPATH=
specific libraries
SPECIFIC_LIBS=

 make.specific

Source code of the acqRTAction for the TRIC module:

 7700

	1. Preface and Requirements
	1.1. User
	1.2. Infrastructure

	2. The FESA Project Website
	2.1. Main Page
	2.2. Development Corner

	3. Principle and Technical Terms
	3.1. Design
	3.1.1. Ownership
	3.1.2. Standard-class / Plc-class
	3.1.3. Equipment-Links
	3.1.4. Std-Services
	3.1.5. Interface
	3.1.5.1. Properties
	std-setting-property std-acquisition-property std-reset-property std-status-property
	std-copypl-property
	property
	gm-property
	Multiplexing Criterion
	Simple
	Complex

	3.1.6. Custom-Types
	3.1.7. Data
	3.1.7.1. Device-Data
	3.1.7.2. Global-Data
	3.1.7.3. Domain-Data

	3.1.8. Actions
	3.1.8.1. Server Action
	3.1.8.2. RTAction
	DeviceCollection
	MultiplexingContext

	3.1.8.3. PLC-RT-Action

	3.1.9. Events
	3.1.9.1. Logical Event
	Timer
	Mtg
	Custom-event-source-ref
	User

	3.1.9.2. Logical-Event-Group
	3.1.9.3. Custom Event Source

	3.1.10. Scheduling
	3.1.10.1. Scheduling-Units
	Selection-criterion
	Selection-rule
	Anticipated

	3.1.10.2. Concurrency-Layer

	3.1.11. Target-Timing-Domains

	3.2. Linux Utilities
	3.2.1. The FESA Commands
	3.2.2. Retrofit

	3.3. Deployment
	3.3.1. Version
	3.3.2. Deployment Option
	3.3.3. Startup

	3.4. Instantiation
	3.4.1. Multiplexing
	3.4.2. Timing-Mapping
	3.4.2.1. CTIM
	3.4.2.2. Timer

	3.4.3. Timing-Simulation
	3.4.3.1. <Domainname>-Domain
	Super-cycle
	Events-sequence

	3.4.4. Instances
	3.4.4.1. <Domainname>-Device-Instance
	3.4.4.2. None-<Domainname>-Device-Instance
	3.4.4.3. NONE-Device-Instance
	3.4.4.4. <Domainname>-Domain-Data

	3.4.5. Global-Data

	3.5. Navigation-Tool
	3.6. Data Management / Source Code Generation
	3.7. PLC-Interface
	3.7.1. PLC Requirements

	3.8. Alarm-Interface

	4. Example FESA Class
	4.1. The Module TRIC
	4.2. The Example Design
	4.3. Source Code Production and Coding
	4.3.1. Server Action
	4.3.2. RT Action
	4.3.3. The SpecificInit Class

	4.4. Deployment of the Example Class
	4.5. Instantiation of the Example Class
	4.6. Testing of the Example Class

	5. Files in Project
	5.1. Common
	5.2. CVS
	5.3. GENERATED_CODE
	5.4. RT
	5.5. SERVER
	5.6. TEST

	6. Howto…..
	6.1. Use the FAQ
	6.2. Use BitEnum
	6.3. Trigger an RTAction on User request
	6.4. Create a DeviceCollection

	7. References
	8. Glossary
	9. Data Types
	10. Table of Figures
	11. Addendum
	11.1. Example source code for the TRIC module

