
E
s

s
e

n
ti

a
ls

The new Front-End Software Architecture (FESA) is a comprehensive framework
for designing, coding and maintaining LynxOS/Linux equipment-software that
provides a stable functionnal abstraction of accelerator device.

FESA Essentials provides a synthetic overview covering key concepts, sample
C++ code and check-lists for equipment-specialists to get a fi rst grasp of what
equipment-software development means when relying on the method, generic
architecture and tools that constitute the FESA framework.

As a new FESA user armed with the knowledge captured in the essentials, you
are encouraged to take benefi t of the tools and utilities to jump-start equipment-
software development within hours. Rolling-up your sleeves, you will probably
fi nd-out that the tools on-line help and tutorials are the natural complement and
immediate stage after reading this book.

FESA Essentials © CERN 2004

E
s

s
e

n
ti

a
ls

2

E
s

s
e

n
ti

a
ls

Equipment software provides a stable and homogeneous functional abstraction
on top of accelerator equipment (sensors, actuators…) whose hardware imple-
mentation is heterogeneous and evolves over time.

FESA Essentials © CERN 2004

Particle accelerators are
fi tted with terminal devices

that can be sensors, actuators
or a combination of both. From
a remote control room, ope-
rators access these devices
accross the control system
infrastructure which consists
of layers of hardware, software
and communication protocols.

mentary services equipment-
software renders. The two differ
very much in nature since the
former is an on-demand servi-
ce, whereas the latter is subject
to tight real-time constraints.
Obviously, request handling
must run at a lower level of
priority and shall not be able to
preempt and wreak havoc with
the real-time task. In order to
decouple the two, equipment-
software includes a softwa-
re abstraction of the device.
Thanks to this abstraction, an
operator does not directly see
the hardware device, but rather
accesses it through its proxy.
Software Device. The
software equivalent of an un-
derlying hardware device is
a data-holder that contains
attributes which can be set-
tings, acquisitions, or dynamic
state-variables, and whose
values at any given time pro-

vide an accurate snapshot of
the underlying hardware device.
Real-time Task. An equi-
pment-software’s core activity is
to ensure that both the software
abstraction and its underlying
hardware device continuously
refl ect each other’s state at run-
time. Ensuring such a real-time
correspondence involves infor-
mation fl owing in both directions:
Controls fl ow from the device
model and down to the hard-
ware; Acquisitions fl ow from the
hardware and up to the device
model. Such transfers are usual-
ly synchronized by the accelera-
tor’s central timing system which
orchestrates machine activity.
Componentization. From
the above, it turns out that an equi-
pment software function consists
of three parts: a server compo-
nent implementing request-han-
dling function, a real-time task
implementing real-time handling,
and a memory segment embed-

Equipment Software.
A crucial part of the control in-
frastructure, it is located at
the junction of two worlds: on
one hand, it communicates
with the control-room’s com-
puters and handles operator
requests (property interface).
On the other hand, it must
deal directly with hardware.
Services. As depicted by
the use-case diagram below,
request-handling and hardwa-
re control are the two comple-

E
s

s
e

n
ti

a
ls 1 Equipment Software

Services supplied

vide an accurate snapshot of

FESA Essentials © CERN 2004 3

ding the software model of the
device. This structure is depic-
ted by the diagram on the right.
Implementation. Deve-
lopment of a new equipment
software always involves co-
ding the three above-mentio-
ned components: defi ning the
device model and coding res-
pectively the request-handling
and real-time handling. For
performance reasons, C++ is
the programming language of
choice for developing real-time
equipment software targetted
at LynxOS, a real-time fl avor
of the Linux operating system.
Code reuse. In spite of
the overwhelming diversity of
accelerator equipments, deve-
lopment of equipment software
exhibits some routine work, the-
reby suggesting that some form
of code-reuse is achievable.
To this end, object-orientated
technologies such as those that
come with C++ provide several

options: inheritance, delega-
tion and generic programming
through the means of templates.
Software frameworks provide
the ultimate form of code-reuse.
Framework. This ap-
proach defi nes at defi ning a
software package that provi-
des a partial yet generic so-
lution that can be tailored, i.e.
customized, on a case-by-case
basis in order to suit the spe-
cifi c needs of the equipment
specialist. A framework makes
for a software package that
contains a set of base classes
that encapsulate the essentials
or key concepts of equipment-
software. Customization redu-

ces to deriving concrete clas-
ses from these base classes.
Method. Relying on the
FESA framework requires the
equipment-specialist to recast
the problem at hand in stan-
dard form: what is the structure
of the equipment data-storage
and actions; how such actions
are orchestrated. The analysis
and design phases consist in
specifying the equipment model.
Tools. Equipment-modeling
is supported by a design tool,
whereas automated code-ge-
neration is used to produce
C++ code from the high-le-
vel model of the equipment.

class BendingMagnet : public Device() {

 public:

 fi eld<double, USER, PERSISTENT> magneticFieldRef;
 fi eld<double, USER, VOLATILE> magneticField;
 fi eld<STATUS, NONE, VOLATILE> status;
 fi eld<double, NONE, FINAL> maxFieldRef;

};

E
q

u
ip

m
e

n
t S

o
ftw

a
re

Bending magnet software device

Equipment software components

6

E
s

s
e

n
ti

a
ls

The framework approach aims at defi ning a software package providing a par-
tial yet generic solution to equipment-software, and which can be refi ned when
applied to a specifi c equipment.

FESA Essentials © CERN 2004

Equipment-software deve-
lopment for accelerator

controls has matured over
more then fi fteen years and
exhibits some recurrent de-
sign patterns which the FESA
framework intends to capture.

events which acts as a pacema-
ker. At the other end, equipment-
software is here to do something.
And this ‘something’ can be
structured as a set of elementary
actions. Such actions correspond
to the work-breakdown structure
of the equipment-software’s job.
In between the two, one needs a
scheduler which continuously lis-
tens to the event-source. Whene-
ver an event occurs, the schedu-
ler triggers an appropriate action
according to some pre-defi ned
logic. Actions can be further cate-
gorized as being either real-time
actions, that is to say actions that

Purpose. The FESA fra-
mework encapsulates recurrent
aspects of equipment-software
development as a reusable
software package that can be
tailored – or customized – on a
case-by-case basis. The gene-
ric software package contains
a set of base classes that en-

capsulate the essentials or key
concepts of front-end software.
In this case, customization re-
duces to deriving concrete
classes from the base classes
and implementing them to suit
specifi c needs. The following
sections describe the object
structures and theri interactions
inherited from the framework,
and then conclude by listing
the degrees of freedom given
to the equipment-specialist for
tailoring the base package.
Static structure. At the
heart of any equipment softwa-
re activity, there’s a source of

E
s

s
e

n
ti

a
ls

Framework overview

2 Framework Basics

FESA Essentials © CERN 2004 7

deal directly with the hardware,
or they can be server-actions
– that serve and fulfi ll operator
requests. Software devices pro-
vide a convenient decoupling
between these two kinds of ac-
tion. A device object is simply
a data-holder that contains at-
tributes which can be settings,
acquisitions, or dynamic state-
variables and whose values at
any given time provide an accu-
rate snapshot of the underlying
hardware device. These seven
classes form the backbone of
the framework’s architecture.
Real-time behaviour.
The scheduler is continuously
listening to the event-source.
Whenever an event is fi red, the
event-source manufactures an
event-object which is forwarded
to the scheduler.The scheduler
examines its type and contents
and triggers an appropriate
action by relying on some pre-
defi ned logic.The code of the
action which is supplied by
the user updates the device in

read or write mode.Once the
action is completed, the sche-
duler consumes the event and
then waits for another event
to occur. This whole process
can be viewed as a simple
event production-consumption
scheme whereby the scheduler
waits for events and consumes
them by triggering associa-
ted actions. What this diagram
shows is that this behavior is
inherited from the framework.
The only code provided by the
equipment-specialist corres-
ponds to the hashed activity.
Request-handling.
On the client-side, equipment
software provides access to the
underlying hardware device,
offering this service as a set of
pre-defi ned requests that the
equipment software responds
to (property access). Request-
types can be classifi ed as fol-
lows: Simple read / write ac-
cess to device variables. Read
/ write access attached to spe-
cifi c cycle or fi ltering conditions.

F
ra

m
e

w
o

rk
 B

a
s

ic
s

Logging information access

Treatment request involving
some on-demand processing
within the server process, with
preliminary or subsequent ac-
cess to one or several instance
variables by the server process.
Customization. In order
to tailor the framework package
and apply to a specifi c equi-
pment class, the equipment
specialist needs to confi gure
it with a design tool, and then
to supply pieces of C++ code
that implement the actions.

Customizable parts

Part #
Design model 1
Real-time actions 0..*
Server actions 0..*

3 Design overview

4

E
s

s
e

n
ti

a
ls

Before jumping to the C++ coding stage, development of new equipment
software with FESA, fi rst involves specifying what the equipment software is
doing and what its structure is. An equipment specialist carries out this specifi ca-
tion stage using the framework’s design tool. By doing-so he describes the equi-
pment based on some high-level modeling language.

FESA Essentials © CERN 2004

Design of an equipment
software component starts

with recasting the problem at
hand in a standard-form, which
consists in asking and answe-
ring recurrent questions: (1)
What are the published servi-
ces provided by the component
to the outside? (2) What is the
software abstraction of the
accelerator device? (3) What
are building-blocks, (4) What is
the real-time behaviour? The
FESA design tool assists the
equipment specialist in speci-
fying the equipment from this
abstract point of view.

provide a snapshot of the state of
the underlying hardware device.
Constitution. Actions are
the basic work-units of equip-
ment software. They come in
two fl avours: the real-time ac-
tions are triggered by central-ti-
ming events and interrupts. The
server actions implement re-
quest-handling. Right from the
design stage, the equipment
specialist has to list all the ac-
tion-classes that can be execu-

Equipment specifi cation to-do list

Defi ne a name and version

Defi ne all parts of an equipment’s specifi cation
with the FESA design tool.

Interface. This defi nes the
set of services published to the
outside (clients from the con-
trol-room or middle-tier softwa-
re layer). Designing an equip-
ment’s interface involves listing
so-called «properties» that can
be remotely accessed throu-
gh the controls-middleware.
Data. At the heart of any
equipment-software, the de-
vice-model is a data-holder
whose attributes continuously

Model. FESA defi nes a lan-
guage through which an equi-
pment-specialist specifi es an
equipment design. This lan-
guage is encoded as an XML
Schema with which the FESA
tools comply with. The design
tool enforces all design-cons-
traints defi ned by the FESA
grammar and lets equipment-
specialists carry-out out their
design work according to the
degrees of freedom given to
them by the metamodel. The
metamodel is subdivided into
several complementary areas,
for which the equipment spe-
cialist has to make some de-
sign choices via the tool.
Information. A FESA class
is identifi ed by the combination of
its name and a version number.

D
e

s
ig

n
 o

v
e

rv
ie

wFESA Essentials © CERN 2004 5

ted at any one time by the equi-
pment-software component.
Timing. An equipment-
software component is usually
synchronized with overall ac-
celerator orchestration by re-
ceiving synchronization events.
For each class, the equipment-
specialist has to defi ne a list of
logical events by giving them
names within the scope of
the equipment-class. Linking
these logical events to acce-
lerator or hardware interrupts
is left until a later stage when
the equipment is deployed on
specifi c front-end computers.
Behavior. After having lis-
ted both the elementary actions
and the triggering events, the
equipment-specialist can com-
plete the picture by relating the
two, i.e. by deciding when and
which action is triggered upon
occurrence of an event. This
last aspect of an equipment-
software’s design is referred to
as the behavioral specifi cation.
Recommendations. In
object-orientated software de-
velopment, getting the design-
right from the start is even more
important than for procedural
languages such as C. In many
cases, all the C++ classes which
structure the code of an equip-
ment-software will come from
the design stage through the
use of automated code-genera-
tion. Afterwards, re-architecting
the software is hardly feasible.
Hence it is of paramount impor-
tance that equipment-specialists
devote time and effort up-front
to carry-out a careful analysis
and design. The fact that the
tool reduces design to fi lling-in
some forms and clicking on the
mouse is not a pretext to hasten
the design but rather an oppor-
tunity to spend more time on it.

A well-formed equipment specifi cation
(interactively created with FESA design tool)
<?xml version=»1.0» encoding=»UTF-8»?>

<equipment-model xmlns:xsi=
 »http://www.w3.org/2001/XMLSchema-instance»
 xsi:noNamespaceSchemaLocation=
 »../../../MODEL/FESA_metamodel.xsd»>

 <information name=»Trivial» version=»0»/>

 <interface-model>
 <property name=»Acquisition»>
 <composite-data>
 <fi eld-name-ref-data-entry>
 sample
 </fi eld-name-ref-data-entry>
 </composite-data>
 <default-action get-set-type=»get»/>
 </property>
 </interface-model>

 <data-model>
 <device-model>
 <fesa-fi eld name=»sample»
 multiplexing-criterion=»MUX_NONE_ID»
 persistency=»VOLATILE»>
 <scalar type=»fl oat»/>
 </fesa-fi eld>
 </device-model>
 <global-store/>
 </data-model>

 <constitution-model>
 <server-action name=»Acquisition»>
 <input-fi eld-ref fi eld-name-ref=
 »sample»/>
 </server-action>
 <rt-action name=»Acquire»>
 </rt-action>
 </constitution-model>

 <timing-model>
 <logical-event name=»AcquisitionTiming»/>
 </timing-model>

 <behavior-model>
 <schedulable-units>
 <rt-action-ref rt-action-name-ref=
 »Acquire»/>
 <trigger>
 <explicit-event-ref
 logical-event-name-ref=
 »AcquisitionTiming»/>
 </trigger>
 </schedulable-units>
 <scheduling-scheme>
 <event-action-map/>
 </scheduling-scheme>
 </behavior-model>

</equipment-model>

6

E
s

s
e

n
ti

a
ls

This chapter summarizes the successive steps for specifying and implementing
the services that an equipment software publishes to the outside world. The pu-
blic interface of a FESA equipment class is composed of a set of properties. The
equipment specialist may implement them by either supplying dedicated server
get/set actions or relying on automated code generation.

FESA Essentials © CERN 2004

Each FESA equipment
publishes an interface as a

collection of get/set properties.
Operators control the equip-
ment through remote invocation
of these properties across the
controls system middleware.

vidual entries are user-defi ned
(authorized types are the same
as those allowed for fi elds) un-
less the name is already reserved
by a device or global-store fi eld.
When this is the case, the type
of the data-entry is constrained
to be identical to the type of the
fi eld that bears the same name.
Filter. This is an optional means
to fi ne-tune the processing being
carried-out when getting or setting
the property. When there is no fi l-
ter attached to the property, the
processing is fi xed. When the get
or set request is transmitted, the
fi lter is used to fi ne tune the treat-
ment of the input (resp. output)

Properties. These can
be thought of as some public
«attributes» of an equipment-
class, that a client accesses in
read (get) or write (set) mode.
The property is more of a vir-
tual attribute in the sense that
its value is not stored as such
by the equipment. Instead, it
is computed on demand when
requested from the client. Get-
ting a property causes the
property to be computed by

the server before being trans-
mitted to the requester. Con-
versely, setting a property
triggers some server-side com-
putation on the input parameter.
Data. The input (resp. out-
put) parameter which is passed
when invoking a get (resp. set)
property is a composite struc-
ture that aggregates one or se-
veral typed data-entries. The
name and type of these indi-

name the property «MyProperty»

defi ne the composite-data

 OPTION:
defi ne the fi lter

defi ne the get action «GetMyProperty»
 AND/OR
defi ne the set action «SetMyProperty»

choose default implementation or code in C++

()
[]

E
s

s
e

n
ti

a
ls

Property interface defi nition to-do list

3 Property Interface

FESA Essentials © CERN 2004 7

parameter. The structure of a
fi lter is the same as for the com-
posite data, apart from the fact
that its entries never references
existing fi elds and are instead
always defi ned within the fi lter’s
naming scope. As an example,
fi lters could be used for data
conversion, low-pass or fi lte-
ring and averaging of measure-
ments, selection or a particular
signal component or time-win-
dow, or parameters of a signal-
transform (e.g. radix of an FFT).
Server Actions. Whether
the property is accessed in get
or set mode, its remote invo-
cation causes some server-
side processing to occur. In
FESA, every object that does
something on the server-side
is encapsulated as a server-
action. Hence, specifi cation of
a property always involves at-
taching it to at least a get or a
set action, or may be both. All
actions that require non-trivial
processing (e.g. data shaping
or logics) must be coded in C++
by the equipment specialist.

Get/Set coding. Pro-
gramming server actions falls
into the same mold as program-
ming real-time actions: the de-
veloper needs to implement the
execute(Event*) method of
the action in which the event
argument carries-out the con-
text within which the action
occurred. The composite-data
and the optional fi lter objects
are accessed within the action.
The bulk of most server actions
consist of transferring data in
between the composite data
and several fi elds, while ap-
plying some data-shaping that
may depend on a given fi lter.
Default Get/Set. In cer-
tain cases the sole processing
associated to getting (resp. set-
ting) a property reduces to mul-
tiplexing (resp. de-multiplexing)
the composite-data to and from
the individual fi elds. In this case
the composite is made of indivi-
dual entries that refer to device
or global-store fi elds. When this

is the case, the C++ code that
implements the property’s get
and set methods is automati-
cally synthesized from the equi-
pment-design specifi cation.
How it works. When the
equipment server receives a re-
quest across the controls mid-
dleware, it fi rst packages it as an
event and transmits to a server-
action, similarly to the way real-
time events are handled. It must
also be pointed-out that request-
handling activity always runs at
a lower level of priority than the
thread or process within which
the real-time actions execute.
Recommendations.
Properties form the contract
that an equipment-class pas-
ses to its potential clients and
should remain stable in the long
run. Ideally, this interface shall
be agreed-upon before-hand
with the operators or programs
that access the equipment. The
interface should also be simple
so as to present an abstract
view of the equipment as seen
from higher-level controls. For
this reason, it is also a good
practice to keep the interface
short and to gather related data
into coarse-granularity compo-
site properties rather than to
scatter information into several
single-entry properties which do
not convey enough information
by themselves. The trouble with
fi ne-grained properties is that
they can cause «fragmented»
traffi c and may require and re-
combination on the client-side.

GetRawCurrent::execute(RequestEvent *ev) {

 BeamCurrentSensor * dev = ev->getDevice():
 MultiplexingContext ctx = ev->getContext();

 this->compositeData.signal=dev->raw.get(ctx);
 this->compositeData.length=dev->points.get(ctx);
 this->compositeData.time=dev->time.get(ctx);

};

P
ro

p
e

rty
 in

te
rfa

c
e

Sample code of a default get

Sample code of a custom get with fi lter
GetFilteredCurrent::execute(RequestEvent *ev) {

 BeamCurrentSensor * device = ev->getDevice();
 MuxContext context = ev->getContext();

 double fc = this->fi lter.cutOffFrequency;
 int n = this->fi lter.order;

 double * rawData = device->raw.get(context);
 int size = device->points.get(context);
 smoothedData = lowpass(fc, n, rawData, size);

 this->compositeData.smoothedCurrent =
 smoothedData;
 this->compositeData.length = dataSize;
 this->compositeData.time = time.get(context);
};

8

E
s

s
e

n
ti

a
ls

The real-time behaviour of an equipment-software is orchestrated by a central
object referred-to as the «Scheduler». You can specify how it behaves by confi -
guring an event-action map which simply associates logical events and real-time
actions. By relying on this built-in map, you can design your equipment’s beha-
viour without writing a single line of code.

FESA Essentials © CERN 2004

Earlier on, you learned
that actions are the basic

work units, or building-blocks
or an equipment-software’s
function. The scheduler puts
them together and orches-
trates them to form the equi-
pment software behaviour.

ple (event-name, action-name),
where the event refers explicitly or
implicitily to an event, the two ap-
proaches are mixable in the map.
Implicit triggering. Lea-
ving the event-name of an event-
map’s entry blank and replacing it
with a read-only device-fi eld iden-
tifi er instead means that the ac-
tual triggering-event is not known
at design-stage and is postponed
to the equipment-software com-
ponent is initialized and loads de-
vice-instance parameters into the
FEC memory. When instantiating
devices, the value of the «inter-
rupt-fi eld» must be restricted to
the logical event-names autho-
rized within the class’ scope.
Device-grouping. An ins-
tance of a real-time action typi-

Scheduling. The real-time
behaviour of an equipment-
software is inherited from the
framework, yet it is fully cus-
tomizable by the equipment-
specialist who decides which
real-time actions execute upon
occurence of particular events.
Event-action map. This
is the standard means for con-
fi guring (i.e. customizing) the
scheduler. The equipment-spe-

cialists assembles the map by
succesively entering a list of
entries, where each entry as-
sociates a particular real-time
action to an event-name. This
map fully defi nes the behaviour
of the equipment-class, without
requiring any C++ programming
by the equipment-specialist.
Events. Events that appear
as key in each entry of the
event-action map are named
within scope of the equipment-
class. Equivalence between
such class-scope names and
machine-level timing names is
achieved through the means
of a dedicated table which is
maintained on a per-FEC basis.
Explicit triggering.
Each entry of the map is a cou-

select the standard event-action map

defi ne the list of class-scope event names

repeat as many times as required:

[]

E
s

s
e

n
ti

a
ls

Scheduler defi nition to-do list

4 Scheduling

choose «explicit» triggering by selecting an event-name

select action-class and optionnal device-selector

 OR

choose «implicit triggering» with an «interrupt» device-fi eld

select action-class and a device-selector (implies «interrupt» fi eld)

FESA Essentials © CERN 2004 9

cally manages a set of devices
which are homoegenous w.r.t.
some criteria. For instance the
execute() method of a real-
time action can process at the
same time a set devices ope-
rating at the same moment.
On the other hand, physical
devices are usually connected
as homogeneous groups, for
which access from a hardware
module (VME board, fi eld-bus
adapter, PLC gateway etc...)
is carried-out as a block. Block
access is associated to very
signifi cant performance gain:
indeed, the cost for transmit-
ting information over a com-
munication channel or over the
bus is usually similar whether
the transaction involves one

or several device instances.
Data-transmission. In
addition to scheduling real-time
actions supplied by the deve-
lopper, it is also possible to in-
terleave upstream data trans-
missions due to subscribed
properties. The developer spe-
cifi es when the communication
action occurs in the same way
as for real-time actions. The pro-
cedure is described in the sec-
tion devoted to subscriptions.
How it works. At initia-
lization, real-time actions are
instantiated and attached to
groups of devices that meet
the device-selector require-
ments. Each real-time action
together with its attached de-

vice-collection is entered into
the event-action scheduling
map. When the same event
triggers several actions, the or-
der in which they execute is the
same as their order in the map.
Recommendations.
The scheduler is one of the most
important parts of the design. In
order to get it right up-front, it is
advisable to generate the code
from the specifi cation and exe-
cute it as soon as possible, even
before coding the real-time ac-
tions. When specifying device-
selectors, one must ensure
that there will be no ‘orphan’
device, i.e. each device must
meet at least one of the logical
conditions and be associated to
some real-time action instance.

S
c

h
e

d
u

lin
g

Samples of grouping criteria

Sample event-action map confi gurations

Shared criterion Motivation Device-selector
Interrupt Synchronized access of a set of devices

that need to operate at the same time
whithin the accelerator’s timing cycle.

(AcqIT==?)

Hardware address Improve data-transmission effi ciency by
accessing all devices on a same com-
munication-node in one go.

(hwAddress@’GPIB/?/*’)

Both of the above When two-above objectives must be
fulfi lled simultaneously

((hwAddress@’PLC/?/*’)&&(AcqIT==?))

Samples of grouping criteria

Logical event Real-time action Device-selector
Initialisation Initialize all
fi eld::acqIT Acquire ((acqIt==?)&&(hwAddress@(SIS3003/?/*)))
fi eld::ctrIT Control ((ctrlIt==?)&&(hwAddress@(SIS3003/?/*)))

Logical event FEC Timing event
Initialization * sps.gen.start_cycle
it1 fecF1 sps.rocs.ring.start
it2 fecF1 sps.rocs.ring2.start

Timing confi guration

Device FEC ctrlIT acqIT
dSample1 fecF1 it2 it1
dSample2 fecF1 it2 it1
dSsample3 fecF1 it1 it2

Device instances

Di Dj

device-set D

InitializationInitialize

Acquire Di

Acquire Dj
Control Di

ControlDj
acqIT Di

acqITDj = ctrlIT
Di

ctrlIT
DCi

time

10

E
s

s
e

n
ti

a
ls

At the heart of any equipment-software, the device-model represents the soft-ent-software, the device-model represents the soft-ent-software, the device-model represents the sof
ware abstraction of an underlying device. This is a data-holder whose fi elds
are continuously updated and transferred to and from the hardware in order to
ensure that the real device and its software proxy refl ect each-other’s state at
run-time.

FESA Essentials © CERN 2004FESA Essentials © CERN 2004FESA Essentials

Accelerator-devices are
functional pieces of equip-

ment which extract some mea-
surements, exert some actions
on the particle-beam or do a
combination of both.

Standard fi elds. Apart
from two pre-defi ned types dedi-
cated to hardware-address-
ing and implicit-triggering, the
framework does not impose
any detailed class hierarchy for
the standard fi elds. Hence, the
equipment-specialist has com-
plete freedom for defi ning what
fi elds actually stand-for. To this
end, it is important to keep in
mind the functional purpose of
each before deciding to make it
a persistent or a multiplexed one.
To this end, the table entitled
«Fields categories according to
functional purpose» proposes a
taxonomy of fi elds inspired from
the standard terminology used in
the domain of dynamic systems
and compatible with accelerator
operations usage.
Multiplexing. The accelera-
tor-complex provides beams to
several users, making it a shared
resource that relies on time-mul-
tiplexing scheme orchestrated
by the central timing-system: the
basic period of the accelerator is
split as a set of successive time-
slots during which the settings of
a specifi c user stay valid. Switch-
ing from on multiplexing context
to the next is triggered by the tim-
ing system, which in turn causes a
switch of equipment settings from
one user to the next. Account-
ing for this multiplexing behavior
at the device-level requires that
fi elds accommodate not a single

Device. Specifying a prop-
er device-model is one of the
most important steps of equip-
ment-software design. Practi-
cally modelling the device con-
sists in defi ning a set of fi elds.
Fields. Fields make for the
fi ne-grained fabrics of the de-
vice-model. Every piece of in-
formation about the underlying
hardware-device is stored in
fi elds. Fields are full-fl edged
objects that provide access
methods, notably get/set acces-
sors for C++ specialist code to
store and retrieve their value.
Type Purpose
standard user-defi ned
hardware addressing
interrupt implicit trigger

Field types

Addressing fi elds. The
framework defi nes dedicated
hardware fi elds, which consist
of a three-part combination of
type / logical-unit / chan-
nel string fi elds for encoding
the hardware addressing of a
device. The type designates
the hardware board family. The
logical-unit typically iden-
tifi es the board index within
the VME crate. The channel
typically refers to a specifi c port
of the board which is used to
connect the specifi c device-in-
stance. For devices which are
connected through more than
one hardware-module, it is pos-
sible to rely on up to three sets
of such address-fi elds.
Interrupt fi elds. The
framework also defi nes dedi-
cated interrupt-fi elds, which
can be referred-to as implicit-
triggers of real-time actions by
the equipment’s scheduler (see
chapter on scheduling for de-
tails). The device model may
refer to one or several interrupt
fi elds.

Defi ne device hardware addressing as a
set of hardware-fi eld string triplets of the form:
(type/logical-unit/channel)

OPTION: defi ne interrupt fi elds

defi ne standard fi elds

E
s

s
e

n
ti

a
ls

Device modeling to-do list

55 Device Model

FESA Essentials © CERN 2004s © CERN 2004s 11

but a set of values, namely one
different value for each different
user. As illustrated by the above
code-fragment, such multiplex-
ing-management is transpar-
ent to the equipment-specialist
whose sole responsibility is to
defi ne which fi elds are mul-
tiplexed, and with respect to
which criterion. Possible criteria
are listed below:
Multiplexing Purpose
NONE not multiplexed
USER cycle user
PARTICLE particle-type
DESTINATION beam-target

Multiplexing criteria

Persistency. Fields are
accessed to and from the FEC
memory at run-time. For back-
up and data-management pur-
poses, they can be assigned
different persistency levels as
defi ned below:
Persistency Purpose
FINAL database cons-

tant.
PERSISTENT periodic backup

save into persis-
tent-storage.

VOLATILE RAM data.
Persistency

Standard data-types.
Data-types are restricted to
the ones supported across the
whole controls system by the
communication middleware,
which comprises the following:
C++ Scalar type Size
bool 1
signed char (byte) 8
short 16

long 32
long long 64
fl oat 32
double 64

Scalars
Unsigned types are not sup-
ported in conformance with a
middleware restriction which
can be traced-back to the fact
that there are no unsigned
types in Java.

Array type
bool

signed char
char

short
long
long long
fl oat
double

Uni and bi-dimensional arrays
Types allowed for uni-dimen-

D
e

v
ic

e
 M

o
d

e
l

Field categories according to functional purpose

sional and bi-dimensional ar-
rays are identical to those per-
mitted for scalars, with a major
difference: the char array type
is meant as a C-style null-ter-
minated string holder whose
dimension stands for the maxi-
mum size allowed.
Extended types. In addi-
tion to the standard types, one
may rely on either custom types
(e.g. enumerations and bit-pat-
terns) or extended types (types
brought into the design by in-
heritance). You must be careful
with such types as they are not
transmissible as such by the
middleware.
How it works. Fields are
managed by the framework
as C++ template classes. This
means that fi eld-access does
not incur the cost of a virtual
function typical of inheritance
schemes. This also means that
there is no hard constraint re-
garding the types supported by
the framework, which are only
constrained by those required
by the rest of the system for
serialization, data-transmission
and storage. During initializa-
tion, the values of the FINAL
confi guration parameters are
retrieved from the data-base
and stored into the FEC’s mem-
ory. PERSISTENT fi elds are re-
stored to the value they previ-
ously held before the reboot.

Category Example Persistency Access
by real-time action by server-action

Confi guration parameter an hardware setting FINAL get get
Operational parameter an amplifi er gain setting PERSISTENT get set (/get)
Acquisition measurements VOLATILE set get
Setting a bending magnetic fi eld PERSISTENT get set (/get)
State-variable past inputs’ shift-register VOLATILE get/set get/set

Taxonomy of fi elds

Field-access code-fragment
// pCtx is an opaque multiplexing-context object
// passed along the action’s triggering event.
// pDev is a pointer on a device instance

fl oat currentUserVoltage=pDev->voltage.get(pCtx);

Subscriptions

10

E
s

s
e

n
ti

a
ls

Sensors typically acquire measurements as time-sampled signals and/or on cer-
tain time-windows. When a client or middle-tier program subscribes to a sensor’s
acquisition property, an upstream communication channel is established through
which sensory information fl ows. In this section, you will learn how to interleave
and synchronize this upstream data-fl ow with real-time task activity.

FESA Essentials © CERN 2004

Acquisition equipment
can require signifi cant

upstream bandwidth and
CPU resources. Hence, it is
important for the equipment
specialist to have control on
when acquisition data are
sent across the network. Two
levels of control are possible
with the FESA framework: a
semi-automated upstream
data-fl ow control scheme or
a full-custom manual option.

tify each each individual property
being updated within a real-time
action. The framework keeps
tracks of the changes on its own.
In the meantime, the equipment-
specialist still has control on
when the data-transmission ta-
kes place. To this end, the equip-
ment-specialist must enter a two-
stage specifi cation: fi rst defi ne a
cmwNotifi cation action within
the equipment-classe’s beha-
viour-model, then defi ne when
this action is triggered in the
behavior-model (see fi gure 2).
Manual scheme. In this
mode of operation, the equip-
ment-specialist is fully responsi-
ble for deciding when and which
property must be updated, and by
which real-time action. This provi-
des a fi ner level-of-granularity for
controlling how upstream com-
munications interleave with real-
time activity. On the other hand,
it may be tedious to maintain the
dependencies between proper-
ties and actions manually, espe-
cially in the case where either the
interface or the action’s imple-
mentation are meant to evolve
independently from each other...
How it works. For the ma-
nual mode of operation, nothing
happens under the hood of the
FESA framework and how it works
is really up to the equipment-spe-
cialist. For the automatic scheme,
a so called Recorder core class
of the framework keeps track of

Subscription management to-do list

�defi ne a cmwNotifi cation action, which selects
the automatic update mode.

�specify when the notifi cation occurs in the be-
havior model

 OR

�do not defi ne any cmwNotifi cation action,
which selects the manual update mode.

�invoke the property update call from within
real-time actions that cause a property change

�maintain the above dependencies for each
subsequent modifi cation of either the property
interface or the C++ code of server and real-time

[]

[]

Subscriptions. Any pro-
perty which is served by a get
action may be subscribed to by
a remote client. The client ex-
pects to be notifi ed for proper-
ty changes by the equipment
software. Upon notifi cation, the
controls-middleware invokes
the get action and transmits the
data upward to the remote client.
Automatic scheme. in
this mode, there is no need for
the equipment-specialist to no-

S
u

b
s

c
rip

tio
n

sFESA Essentials © CERN 2004 11

all real-time activity. The Re-
corder is notifi ed at run-time
of the completion of real-time
actions and of the context wi-
thin which they were triggered.
From this dynamic information,
the list of updated properties is
maintained by the Recorder.
This involves property-action
relationships built-up at initia-
lization from static information
coming from the model about
dependencies between actions
and fi elds. When the cmwNo-
tifi cation action is triggered
in accordance to the equiment
class’ behavior model, it causes
subscribed properties to be ac-
cessed in get-mode. At the same
time, it resets the update-history
maintained by the Recorder.
Recommendations.
Grouping data is an effi cient
way to improve transmission
over a packet-switched network.
It is better to group pieces of in-
formation that are meant to be
subscribed-to by remote clients
as composite properties rather
then to scatter them in nume-
rous, low-granularity properties.

class Acquire: public RTAction<RTEvent, BeamSensor>;

Acquire::execute(RTEvent *ev) {

 BeamSensor* device = ev->getDevice();
 MuxContext ctx = ev->getContext();

 for (unsigned int i=0; i<devCol.size(); i++){
 BeamCurrentSensor* dev=devCol[i];
 AcquisitionBoard* board=
 AcquistionBoard(dev->hwAdress.get());
 fl oat current=board.getSample();
 dev->cur.set(ctx,current);
 }

 // updating the «current» fi eld implies
 // that the following properties are also
 // updated for the device-collection managed
 // by the Acquire instance.

 Current.update(ctx, devCol);
 CurrentAverage.update(ctx, devCol);

};

Example of Automatic property update interleaved with subscriptions

Example of manual property update

Property name Data GetAction Output fi elds
Current cur GetDefault irrelevant
CurrentAverage averageCur GetCurrent cur

timeWindow
Interface-modelextract (properties and associated get-actions)

Logical event Action Device-selector
fi eld::crtlIT Control ((hwAddress==?)&&(ctrlIt==?))
fi eld::acqIT Acquire ((hwAddress==?)&&(acqIt==?))
Reset Init *
endOfCycle cmwNotify * (implicitly those devices for which property changed...)
Reset cmwNotify * (implicitly those devices for which property changed...)

Behaviour-model extract

class BeamSensor : public Device {
 fi eld<HWADRS,NONE,FINAL> hwAdrs;
 fi eld<int,NONE,FINAL> ctrlIt;
 fi eld<int,NONE,FINAL> acqIt;
 fi eld<fl oat,TGM_USER,VOLATILE> cur;
};

18

E
s

s
e

n
ti

a
ls

Real-time actions transfer data to (resp. from) the hardware device and from
(resp. to) its software counterpart through hardware interface modules. They
do so within a loop involving a subset of devices which are grouped according
to some pre-defi ned criteria. There is usually one instance of a real-time action
class per homogeneous subset of devices.

FESA Essentials © CERN 2004FESA Essentials © CERN 2004FESA Essentials

involves all devices attached to
the real-time action instance.
This set of devices is referred
to as the action’s deviceCol-
lection. Sample C++ code for
the device-loop is depicted in the
«device-loop» code fragment
shown on the next facing page.
Wake-up context. The
multiplexed nature of accelerator
usage means that the same ac-
tion may be invoked from within
different multiplexing contexts of
the machine. In turn, this implies
that the fi eld’s storage for set-
tings and acquisitions may differ
between two successive invo-
cations of the real-time action’s
execute(RTEvent *) meth-
od. As discussed in chapter 12,
FESA allocates several slots for
multiplexed fi elds, each slot be-
ing dedicated to one specifi c us-
age-context of the fi eld. In order
to let the real-time action work-out
the appropriate slot, the event
embeds a MultiplexingCon-
text object containing informa-
tion about the machine context.
As a matter of fact, the real-time
action does not need to decode
the context, which means that
the equipment-specialist shall not
worry about the actual context
passed when implementing the
execute(RTEvent *) meth-
od. Instead the framework does
it transparently for him when he
invokes the fi eld’s get and set
methods by and transmits the

Real-time Actions. They
are the basic work-units of the
equipment-software’s real-time
task., i.e. any real-time handling
activity is eventually broken-
down as a set of elementary
actions. For each action class,
say MyAction, the equipment-
specialist has to implement
in C++, the body of a MyAc-
tion::execute(RTEvent
*) method. The input pa-
rameter of this method refers
to an RTEvent object that
carries with it the wake-up

context within which the ac-
tion is invoked by the frame-
work’s real-time scheduler.
Device-collection. For
each front-end on which an
equipment class is deployed,
a set of device instances are
confi gured. An instance of a
real-time action class typically
manages a group of devices
that are homogeneous with re-
spect to certain grouping crite-
ria (e.g. devices connected to
the same communication-node
or hardware module or devic-
es that need to operate at the
same time). There can be as
many instances of a given ac-
tion class as there are homoge-
neous groups resulting from the
scheduler’s device-selectors.
Device-loop. Transfers
take place in a device loop which

E
s

s
e

n
ti

a
ls 99 Real-time Actions

The set of real-time actions
defi nes the work-break-

down-structure of an equip-
ment software’s real-time
task. Implementing them is
the main C++ coding task
for the equipment-specialist.

Identify the minimal information which is suf-
fi cient to convey understanding of the normal
course of execution of your program. Register
such pieces of information with INFO statements
appropriately located in your code.

Identify what could go wrong at run-time.For
each situation, list the pieces of information ne-
cessary to pin-point the source of the problem
and insert one or several DEBUG, WARNING,
ERROR and FATAL statement to register them
precisely.

Logging to-do list

FESA Essentials © CERN 2004s © CERN 2004s 19

R
e

a
l-tim

e
 a

c
tio

n
s

Real-time action sample

context as a parameter (see
chapter about multiplexing).
Hardware access.
Within the device-loop, the
real-time action transfers data
between a device’s fi elds and
«appropriate» channels of
the hardware module. Find-
ing-out the appropriate chan-
nel is achieved by decoding
the hardware-addressing fi eld
of the current device-instance.
Error handling. Several
abnormal situations may occur
within the course of running the
body of the execute(RTEvent
*). Refer to the chapter
on logging to fi nd out how
to report such situations.
How it works. Invoca-
tion of the real-time action’s
execute(RTEvent *) meth-

// This example supposes a specifi c kind of analog measurement devices
// which are connected through a set of VME acquisition boards
// (one VME board manages one or several devices, each device being
// connected to one specifi c channel of the board). It is assumed
// that the on-board buffer of each acquisition board samples
// inputs from all devices at the same time.

Acquire::execute(RTEvent * pEv) {

 try {

 // Perform block-access of the VME board, which is shared by
 // the device-collection managed by this instance of Acquire.

 // Board’s logical unit number can be asked to any, e.g. fi rst device
 Board* pBoard = Board::getBoard(deviceCollection[0]->hw1_lun.get());
 Buffer buffer = pBoard->getBuffer(ALL_CHANNELS);

 }
 catch(...){
 log<<«Failed to retreive buffer from acquistion board»<<endError;
 return;
 }

 for (unsigned int i=0; i<deviceCollection.size(); i++){

 VacuumSensorDevice* pDev=deviceCollection[i];

 fl oat measure = buffer.extractChannelDataAsFloat(pDev->hw1_ch.get());
 pDev->pressure.set(measure);

 }

};

od at the specifi ed time is en-
sured by the framework sched-
uler which also transmits the
triggering event. The current
mono-thread execution model
of the framework lies on the
assumption that the duration
of each real-time action is neg-
ligible when compared to the
repetition-rate of the triggering
interrupts. The equipment spe-
cialist is responsible for making
sure that the assumption practi-
cally holds. To this end, he has
to check that the timing require-
ments of his equipment do not
lead to an over-run situation.
Recommendations.
Real-time actions are meant to
be implemented as indepen-
dent, possibly reusable C++
classes. The standard way to
“compose” them together is to

attach them to the same trigger-
ing event at the scheduler-level,
in which case they are invoked
in defi ned sequence. Real-time
actions can also exchange infor-
mation by sharing fi elds. On the
other hand, C++ theoretically
also makes it feasible to rely on
(a) delegation to custom handy
classes and (b) implementa-
tion-inheritance amongst real-
time actions. Such approaches
are strongly discouraged. They
can all too often be abused and
misused. They result in tight
couplings among custom ac-
tion-classes which makes them
hard to reuse elsewhere. Fur-
thermore elaborating the C++
class hierarchy beneath the
framework buries it into your
C++ code without any visibility
at the design-document level.

20

E
s

s
e

n
ti

a
ls

Logging’s purpose is for an equipment-software component to notify «interested
parties» that something noteworthy, unusual, or abnormal occurred within the
course of execution. To this end, FESA defi nes an API and mechanism for devel-
opers to log run-time information with a range or severity levels that conform to
the log4j standard.

FESA Essentials © CERN 2004

Logging-support takes the
form of a log class derived

from C++ style string-streams.
This makes logging similar to
writing messages to the stan-
dard output, apart that it also
requires setting a severity level.

call of the form: log<<«this is
an error»<<endError, where
endError marks the end of the
error message. The stream can
be fed-in with character strings
as well as with numeric types,
whose conversion and formatting
into character strings is automatic.
Logging levels. FESA di-
rectly borrows logging levels from
the log4j standard (http://ja-
karta.apache.org/log4j/
docs/api/index.html). As
registered in the table on the
facing page, there are fi ve such
levels, namely DEBUG, INFO,
WARNING, ERROR, FATAL. Set-
ting the appropriate level consists
in terminating each logging mes-
sage with a dedicated ending.
How it works. Messages
logged through the C++ << op-
erator fl ow-in into a local stream-
buffer. This local buffer is kept into
local memory until the stream is
explicitly fl ushed by terminating
the log with an endDebug, end-
Info, endWarning, endError
or endFatal. Until encountering
such an ending call, the local buf-
fer progressively grows-up and
consumes memory in order to ac-
commodate the increased string.
It is therefore assumed that the
equipment-specialist makes sure
that the logging of each message
is followed by an appropriate
ending. In case, the equipment-
code fails to do so due to a pro-
gramming oblivion, some built-in

Logging objects. Equip-
ment-specialists can log run-
time information messages by
relying on a dedicated log ob-
ject. Logging objects are avail-
able from the four different loca-
tions in which the specialist can
place some custom code: from
within the execute() method
of a server-action, from within
the execute() of a real-time
action, from within the specif-
icInit() method of an equip-
ment’s interface part, or from
within the specifi cInit()
method of an equipment’s real-

time part. In each situation,
the logger is accessed in the
same fashion as a local log
object. However, there are ac-
tually four distinct logger object
instances, one for each of the
four usage context mentioned
above. Note that all server-ac-
tions share the same log object.
Similarly, there is one single
log object shared by all real-
time actions (see facing table).
Logging API. The log ob-
ject inherits from the C++ string
stream class (ostrstream),
which implies that logging mes-
sages can be sent to the log-
ging-system in a fashion much
similar to the way one writes
into a standard C++ stream
such as cout. This means that
logging an error for instance, is
achieved with a stream output

Identify the minimal information which is suf-
fi cient to convey understanding of the normal
course of execution of your program. Register
such pieces of information with INFO statements
appropriately located in your code.

Identify what could go wrong at run-time. For
each situation, list the pieces of information nec-
essary to pin-point the source of the problem and
insert one or several DEBUG, WARNING, ERROR
and FATAL statement to register them precisely.

E
s

s
e

n
ti

a
ls

Logging to-do list

10 Logging

FESA Essentials © CERN 2004 21

mechanism may force the fl ush
whenever the internal stream
buffer size exceeds some pre-
defi ned limit. In this case, the
message is logged at WARNING
priority and complemented with
an indication of the stream’s
forced fl ush. Each equipment-
class deployed on a given front-
end computer possesses its
own of set of four log objects
as described above. On the
front-end computer, logging in-
formation from different equip-
ment-software components is
channelled through a message
queue and dumped into fi les by
a couple dedicated process-
es which perform some time-
stamping. Accuracy of such
automatic time-stamping is ap-
proximative as it not applied at
the source. Files are allocated a
confi gurable maximum length,
which means that information
may be lost after some time.
Recommendations.
Do not overlook logging as
this is the primary and almost
sole means whereby you can

equipment, on the other hand.

AcquireTemperature::execute(RTEvent *ev) {

 log << «acquire temperature» << endInfo;

 for (unsigned int i=0;i<deviceCollection.size();
 i++){
 ThermometerDevice* pDev=deviceCollection[i];
 AcqBoard* board= getAcqBoard(pDev->hw.get());
 try {
 fl oat temperature=board.getSample();
 if (temperature<0.0) {
 log << temperature
 << « is too cold!»
 << endWarning;
 }
 } catch (...){
 log << «accessing thermometer »
 << pDev->name.get()
 << endDebug;
 log << «fail to access board»
 << dev->hwAddress.get()
 << endError;
 }
}

L
o

g
g

in
g

Sample code with several logging statements

equipment, on the other hand.

Logging levels and fi les

Severity Purpose C++ marker
DEBUG «fi ne-grained informational events that are most useful to debug

and application».
endDebug

INFO «informational messages that highlight the progress of the appli-
cation at coarse-grained level».

endInfo

WARNING «designates potentially harmful situations». endWarning

ERROR «designates error events that might still allow the application to
continue running».

endError

FATAL «designates very severe error events that will presumably lead the
application to abort».

endFatal

Severity levels, as copied from the log4j standard (http://jakarta.apache.org/log4j/docs/api/index.html)

Log fi le Purpose File type
RtLog records log information from all real-time actions. FIFO
ServerLog records log information from all server-actions. FIFO
InitRtLog records log information from the initialization-stage of the equip-

ment-software’s real-time component.
static after ini-
tialization.

ServerLog records log information from the initialization-stage of the equip-
ment-software’s server component.

static after ini-
tialization.

Logging fi les available for each equipment-class on a given front-end computer

convey detailed information
about what is going-on once
your equipment is deployed
and running. At development
and debugging stage, it may
be tempting to bloat your code
by scattering messages you
fi nd useful in order to get your
code right but which may prove
useless afterwards. Hence, ad-

equate logging is probably bet-
ter thought-of at a late stage of
the development cycle, once
the code is stabilized. You
may then make sure that log-
ging messages convey coarse-
grained information about the
normal course of execution on
one hand; fi ned-grained de-
tails that help you diagnose the

6

E
s

s
e

n
ti

a
ls

When some classes of equipment software exhibit functionnal, structural or be-
hvioral similarities, this suggests code reuse or some form of sharing. FESA mo-
deling language supports inheritance to reuse model-parts of existing classes.

FESA Essentials © CERN 2004

the operators and middle-tier. By
doing so, you let applications ac-
cess your equipment in the same
fashion they already access the
base class. Inheriting properties
means that you assign the same
set of properties together with
their composite data and filter
structures to the new equipment
class. This is however a pure in-
terface inheritance: the get and
set actions that implement the
properties (default or custom) do
not come together by default and
you’ll have to either re-implement
them or to inherit other comple-
mentary parts (see below).
Field inheritance. The
next logical step after inherit-
ing properties is to inherit fields
(possibly with custom data-
types). You may want to inherit
all the fields of the device-model.
Alternateky, you may only re-
quire a subset of those fields.
Action inheritance. Once
a class inherits a set of fields de-
fined by other classes, one may
consider the third level of inheri-
tance: inheriting the implementa-
tion code of actions. A prerequi-
site is that the input and output
fields attached to the actions are
defined by the equipment-soft-
ware class. Both server and real-
time actions can be inherited.
Since the C++ code is based
on templates, the very same ac-
tion code will indeed work with

FESA inheritance. Con-
trary to the common form of in-
heritance encountered in C++
for which refining a general class
into a more specialized one
simply consists in making the
latter inherit from the latter, one
must be more cautious when
dealing with inheritance within
the FESA framework. Indeed
stating merely that “a class of
equipment software B inherits
from another class B” does not
mean anything in this context.
You have to be more specific
here, i.e. do you want to inherit
the interface of the equipment-
software? it’s device model? its
set of server-actions? its set of
real-time actions? its behavior?
Or do you want to inherit ev-
erything all at once? The short
answer to all these questions is
that in FESA you never inherit
completely one class from an-
other one (albeit you can start
a design by copying a refer-
ence one). Rather, inheritance
of a new equipment-class is

achieved bit-by-bit, i.e. you can
elaborate a new class by picking
parts of a design here and other
parts there, from several other
classes. The kinds of building
bricks you can “inherit” from are
listed in the following sections.
Extend or implement?
May be the first question to ask
yourself when talking about in-
heritance is whether you need
to inherit from an interface or
from an implementation. In
Java the two options are distun-
guished by different keywords:
“implement” refering to the for-
mer, “extend“ referring to the
latter. In C++, the two notions
are dealt-with with pure virtual
(abstract) and virtual methods.
With FESA, the choice first de-
pends on the class you inherit
from: full-fledged equipment-
classes possess both an in-
terface and an implementation
whereas there are pure inter-
face classes. Second, it even-
tually goes down to which mod-
el-parts he picks-up from them.
The diagram shown on the next
facing page illustrates the two
approaches of interface and
implementation inheritance.
Property inheritance.
This is probably the most impor-
tant form of inheritance. You use
it when you want to provide a
new class with an existing (and
perharps long-used) interface to

E
s

s
e

n
ti

a
ls 11 Inheritance

The FESA framework is
based on inheritance: an

equipment-specialist applies
and tailors the framework
by deriving concrete classes
from a set of core abstract
classes. This chapter pre-
sents a means for equipment
specialists to achieve custom
code-reuse through the same
means of OO inheritance.

Preliminary proposal

for internal discussion

�������������������������

����������
����������

�����������
� ��������������������� ������������������������
� ���������������� ��������������������������

�����������
� ���������� ���������������������������������
� ���������� ��������������������������������
� ���������� ���
� �������� � ��������� ����������������������������

��������������

��������

���������

���������������������

��
����������

�����������
� ���������������������������������
� ���

��������
� ����������������� ������������������������
� ������������������� ������������������� �
� ����������������������������������

��������
� ���������� �������������
� ���������� �������������
� �����������������������������������

���������
� ���
� �����������������������������
� ��
� ��
� ������������������������
�

���������������������

���������������������������
����������

�����������
� ������������������ ������������������������

�����������
� ���������� ������������������������������ ������������������
� ���������� ������������������������������ �����������������
� ���������� �������������������������� � �������������������������
� ��������� ������������������������� � ����������������������������

��������������
� ���������������������������
� ����������������� �������������
� ����������������� �������������
� ���������������� �������������
� ����������� � �����������������������
� ���������������� �������������
� ���������������������
� ��������������������� ������������������
� �������������������� ������������������
� ���������� � ��������������������������
� ������������������
� ��������� � ��������������
� ��������� � ��������������
� ��������� � ��������������
� ��������� � ��������������
� ������� � � �������������������
� ���������������
� ���������� � ����������������
� ���������� � ����������������

��������
� ������������������������ ����������������
� ����������������������� ����������������
� ������������ � � �������������
� ������������ � � �������������

���������
� ���
� ���
� ���

� ��
� ��
� ���
� ���
� ���
� ��
� ���
�

����������������

�������������������

�� �� �� ��

���

���

���

���

� �

�

FESA Essentials © CERN 2004 7

In
h

e
rita

n
c

e

any concrete class of device.
Behavior inheritance.
This option is theoretically fea-
sible. In the case the new equip-
ment class does only defines
server-actions, as in the illus-
tration above, it makes sense to
inherit real-time behavior. Oth-
erwise it may be very intricate to
decide how inherited real-time
actions interleave with the ones
introduced by the derived class.
Copy vs inheritance.
In some cases, you simply
want to start a new design from
an existing template, in which
case you are more interested
in copying bits of other equip-
ments and assemble those

parts within the new class. What
you can do with inheritance
(i.e. picking these and those
parts from other classes), you
can do it with copy. The differ-
ence is that inheritance implies
a reference and a long-term
relationship between the base
class and its derived sub-class,
whereas copying is a one-shot
decision with no further binding.
If you are not sure, you should
go for the copy approach then
for inheritance since it creates
some burden in the long run.
How it works. Inherit-
ing parts of a design from an-
other existing class draws
a reference from the former

to the latter, which means
that any subsequent change
to the base class will be re-
flected in the derived classes.
Recommendations. In-
terface inheritance is advisable
once a clear set of interfaces has
been established by operation.
In the meantime, be very care-
ful when attempting implemen-
tation inheritance since things
can then get complicated and
hard to maintain: any subse-
quent change to the base class
may have disastrous impact on
all the derived classes. When-
ever you think about relying on
inheritance, also ask yourself
whether a mere copy would do.

6

E
s

s
e

n
ti

a
ls

Synchronization of a software equipment is a deployment issue which com-
plements the scheduler’s confi guration. The latter step binds actions to logical
events, named within the equipment class’ scope. The former step associates
logical events to the underlying machine events that orchestrate the whole acce-
lerator’s activity.

FESA Essentials © CERN 2004

the accelerator’s central timing
system. The latter type of source
is the most important in that it is
the standard means for synchro-
nizing an equipment software
activity with the overall orches-
tration of the accelerator-com-
plex activity. Confi guration of the
timing event sources involves
the following. Specifying the
scheduler’s confi guration con-
sisted in entering a list of event-
action couples, where the event
could be either explicit or implicit.
Explicit triggers. Explicit
triggering means that the real-
time action is executed whenev-
er the timing event-source fi res
an event whose logical name is
identical to the one specifi ed by
a given event-action fi ring rule.
Implicit triggers. This links
an action to a custom-defi ned de-
vice fi eld. The fi eld value of each
device instance is restricted to be
one of the logical event names.
This constraint is enforced by the
FESA device-instantiation tool.
Event-binding. This is a
deployment-stage confi guration
that temporally connects your
equipment’s behavior to the un-
derlying machine activity. For
each deployment-unit, i.e. for
each pair (front-end computer,
equipment class), a map associ-
ates the class’s logical events to
corresponding machine events.
This map consists of a set of

Accelerator timing.
The central timing system is
responsible for the temporal
coordination of the accelera-
tors’ complex. This system

manufactures machine events
which are distributed across a
dedicated timing network to the
various front-end computers.
Event sources. The
FESA framework features a set
of pre-defi ned event-sources: a
periodic event source whose
repetition rate is customized by
the equipment-specialist, and
several timing event-sources
(one per timing-domain) which
fi re at a pace synchronous with

E
s

s
e

n
ti

a
ls 11 Synchronization

Synchronization confi gura-
tion attaches an equipment

software to the central tim-
ing system of the accelerator
complex. This synchronizes an
equipment-software’s real-time
activity with the overall orches-
tration of the machine.

Synchronization to-do list
PREREQUISITE:

defi ne explicit triggering rules in scheduler
 AND/OR
defi ne implicit triggering-rules in scheduler

FOR EACH DEPLOYMENT UNIT FEC&CLASS :

defi ne the timing domains known on FEC

defi ne the synchronization binding as a set of
pairs (logical event, timing event)

OPTIONAL: in case of implicit triggers only

FOR EACH DEVICE-INSTANCE ON A FEC :

select triggering fi eld’s value from set of
logical events available on the FEC.

[]
[](

[]

FESA Essentials © CERN 2004 7

S
y

n
c

h
ro

n
iza

tio
n

Synchronization information sample

pair entries (logical event, tim-
ing event). Once this mapping
is done, you can think as if the
timing event-source manufac-
tures and fi res event-objects
that bears logical event names,
converted on-the-fl y from
the incoming event names.
Timing domains. Dif-
ferent parts of the accelerator-
complex form different timing
domains. The central timing sys-
tem broadcasts different pieces
of information across the timing
network to these domains. Each
equipment software compo-
nent deployed on a given front-
end computer must register to
one or two of them (the latter
case is typical of equipment
operating on a transfer-line).
Timing controls. In ad-
dition to being a source of ma-
chine events, the local hard-
ware components of the timing
system are programmable and
they feature an interface for
equipment software to fi ne-tune
delays after which events fi re.
To this end, the equipment class
relies on delegation: at design-
stage, the equipment specialist
can declare that the equipment

class is dependant on the timing
control class (see the chapter
on composition), at either the
device-level or the equipment-
software-level. In the former
case, the device model must
defi ne a fi eld that holds the
name of the associated timing
equipment. In the latter case,
the fi eld in question must be part
of the global (class-level) data-
store. In both cases, the con-
trol of the remote timing device
is performed within a real-time
action’s execute(RTEvent
*) method. The API for con-
trolling the remote timing ob-
ject is documented separately
by the timing equipment class.
How it works. At initializa-
tion, the equipment-software
retrieves confi guration fi les
(extracted from the data-base)
for the front-end computer on
which it runs. A fi rst fi le contains
the timing confi guration con-
taining a list of timing domains
as well as the binding between
logical events and low-level tim-
ing events. A second fi le con-
tains the set of device installed
on the front-end computer. Af-
ter initialization, the scheduling

map converts the list of logical-
event keys by the correspond-
ing low-level timing event keys.
Hence, the specifi ed sched-
uling scheme is translated
for the actual timing context.
Recommendations.
Before testing a new equipment
software on the machine, per-
forming some tests with a simu-
lated event-source can be use-
ful. This makes for a controlled
environment within which the
equipment specialist can stim-
ulate at will its equipment with
a variety of timing situations.

Logical event
BeamStart
BeamEnd
Forewarning
Initialization

Timing-model

Name fi eld::acqIt fi eldCtrlIt
dev1 BeamStart BeamEnd
dev2 (slow) Forewarning BeamEnd
dev3 BeamStart BeamEnd
dev4 BeamStart BeamEnd
dev5 BeamStart BeamEnd

Some device instances

Trigger Real-time action Device-selector
Initialisation Initialize all
fi eld::acqIt Acquire ((acqIt==?)
fi eld::ctrlIt Control ((ctrlIt==?)

Behavior-model

Logical event Underlying timing event
BeamStart pix.sinj
BeamEnd pix.apow
Forewarning pix.fpow
Initialization -

Deployment of the equipment-class on a FEC

34

E
s

s
e

n
ti

a
ls

From a control-room computer, an equipment class is accessed across the con-
trols-middleware via device handles through a narrow interface. On a front-end-
computer, it is possible to link an equipment’s interface library and access an
equipment class in a similar fashion.

FESA Essentials © CERN 2004FESA Essentials © CERN 2004FESA Essentials

trols-middleware, it does it over a
device handle which is provided
by the RDAService. Sample
code is given on the next page.
The controls-middleware ensures
marshalling of the request across
the network. When it reaches the
FEC, the request is processed
by relying on the MyEquip-
mentInterface that repre-
sents the class, in a fashion simi-
lar to the one described above.
How it works. The con-
trols-middleware’s server may
be linked against one or several
FESA classes. Client programs
issue requests on a specifi c de-
vice-name. When the middle-
ware server receives the request,
it invokes a method of the Ab-
stractEquipmentInterface
which returns a reference to the
concrete MyEquipmentInter-
face that manages the device.
Then the controls middleware re-
trieves both the request’s device
and property, and invokes the get
or set method on it. Hence, there
is no much difference whether
your equipment is accessed lo-
cally or remotely as illustrated by
the two types of code-fragments
shown on the next page. How-
ever, going through the middle-
ware supports subscriptions,
which is not the case otherwise.

Equipment access.
Each specifi c equipment soft-
ware MyEquipment features a
concrete class MyEquipmen-
tInterface, inheriting from
a base-class of the framework,
AbstractEquipmentInt-
erface, and which is respon-
sible for providing access to
the equipment’s properties.
The C++ implementation of this
class is automatically generated

from the equipment’s design. All
equipment-access requests em-
anating from a remote or local
client end-up as calls to this My-
EquipmentInterface class.
Local access (C++). In
order to access an equipment
from within a local front-end ap-
plication written in C++ you have
to link your program against the
server-library component of
this equipment. Your code fi rst
needs to obtain a reference on
the MyEquipmentInterface
object. Once you get this inter-
face, you may require any de-
vice instance or property of the
equipment-class from it. Sample
code is given on the next page.
Remote access (C++
& Java). When a client
program accesses an equip-
ment-software through the con-

E
s

s
e

n
ti

a
ls 1177 Equipment Access

Equipment software is
realized by a set of binary

components: the equipment
interface (or server) and the
real-time task. The two can
be deployed in separate
processes communicating
through a third, shared-me-
mory component. A front-end
C++ application may link
against an equipment interface.

Link your C++ application against the respec-
tive FESA server libraries of one or several equi-
pment classes you need to access from within
the application.

 In the C++ application:

instantiate the specifi c equipment-interface
objects for each equipment class.

Retreive properties and devices.

Invoke get/set methods on these interfaces.

[objects for each equipment class.[objects for each equipment class.

]
 methods on these interfaces.

]
 methods on these interfaces.

To-do list for accessing an equTo-do list for accessing an equT ipment locally

FESA Essentials © CERN 2004s © CERN 2004s 35

E
q

u
ip

m
e

n
t A

c
c

e
s

s

Remote access from a Java application running in a control room computer
import cern.cmw.rda.client.*;
import cern.cmw.*;

public class get

{
 public static

 void main(String[] args){

 String deviceName=«thermometer1»;
 String property=«Temperature»;
 String cycle=«CPS.USER.SFTPRO»;

 RDAService rda=RDAService.init();
 DeviceHandle device=rda.getDeviceHandle(deviceName);

 Data temperature=device.get(property,cycle);
 }

};

#include <ThermometerEquipmentInterface.h>

int main(int argc, char ** argv) {

 ThermometerEquipmentInterface
 thermometerInterface(«Thermometer»);

 thermometerInterface.init(type, argc, argv);

 string deviceName(«thermometer1»);

 Property * pProp;

 Device* dev = thermometerInterface.getDevice(deviceName);

 RequestMultiplexingContext ctx(«CPS.USER.SFTPRO»);

 pProp = thermometerInterface.getProperty(«Temperature»);
 rdaData data1;
 pProp->get(dev, ctx, &f, &data1);
 fl oat temperature=data1.extract(«temperature»);
};

Local access from a C++ application running on the same front-end computer

36

E
s

s
e

n
ti

a
ls

The purpose of alarms is to notify interested parties of faults, which are detect-
ed by an equipment-software component, so that corrective action can be taken
according to the priority of the fault. To this end, FESA relies on dedicated fi elds
and properties for equipment-specialists to raise alarms to the LASER system.

FESA Essentials © CERN 2005

Alarms-support takes the
form of dedicated alarm

properties and associated fault-
fi elds. This means that alarms
are dealt-with in the same way
one deals with standard prop-
erties and fi elds.

Alarm system. FESA pro-
vides a front-end layer to the
underlying LASER alarm-sys-
tem, which defi nes its own
protocol and API. Although this
FESA layer insulates you from
dealing directly with the LA-
SER interface, you need to be
aware about how alarms are
transmitted and processed.
Alarm properties. You
can introduce alarm properties
into your equipment model in the
same way as regular properties.
Every alarm property automati-
cally retrieves the state of its as-
sociated fault-fi eld together with
the fault time-stamp. Alarm prop-
erties are notifi ed by server ac-
tions and real-time actions and
the association between alarm
properties and actions needs to
be specifi ed in the device design.
Fault-fi elds. You specify
possible faults as dedicated fault-
fi elds in your design. As the other
FESA fi elds, fault-fi elds may be
multiplexed in case you want to
restrict a fault to a particular op-
erating context of the accelera-
tor. The LASER API identifi es all
faults by the fault triplet: the de-
fault mapping is as follows: (1)
your equipment’s class name
stands for fault family (FF), (2)
the device-name stands for fault
member (FM); and a descriptive
text fi eld must be supplied by you
when defi ning the device class.

Alarms. During the course
of execution of an equipment-
software program, several
faults may occur. For instance,
some hardware component
may fail, some parameters may
leave their allowed range, or
the software may raise some
exception. In such cases, you
don’t know or don’t want to
handle the situation within your

equipment-software code and
need to transfer the responsi-
bility of deciding how to cope
with or remedy what you ob-
serve to the people in charge
of operating and monitoring the
accelerator. This means that
raising alarms is different in
purpose than logging. When
you raise an alarm you want
to communicate its description
to operators of the accelerator,
equipment specialists or any
other party that is responsible
for correcting and responding
to the fault state. Hence, you
must make sure that the list of
faults is well understood and
accepted by them before-hand.

With the design-tool, add the Alarm properties.

In your design’s data-model, register a fault-fi eld
for each fault (hardware failure, harmful operating
point...) your equipment notifi es.

Confi gure actions that trigger the Alarm properties
by making sure they reference them, as usual.

Ensure that all interested parties approve your
alarm model, and provide in collaboration with them
complementary pieces of information.

In C++ code raise alarms by setting fault-fi elds to
true. Lower them by setting-fault fi elds to false.

E
s

s
e

n
ti

a
ls

Alarms to-do list

18 Alarms

FESA Essentials © CERN 2005 37

Fault-invalidation of
regular properties.

The fact that some fault-fi eld
is set “on” may indicate that the
device is not properly function-
ing - the consequence of this
is that using normal properties
(which means reading or writ-
ing) may not be reliable. You can
declare at the design stage that
a given property is conditional
to some selected set of faults.
FESA automatically checks
whether any of the related fault-
fi elds is in the “set” state and
will throw an exception, instead
of allowing you to set or get a
value that may be unreliable or
even have no meaning at all.
Time stamping. If the
UTC time is available in the
equipment, the fault-fi elds are
stamped with the time the fault
state is generated and this time
is communicated as part of the
whole fault information to the
Alarm Monitor. The Alarm Moni-
tor uses this timestamp as the
‘LASER user timestamp’ when
the fault state is sent to LASER.
How it works. A compo-
nent called the Alarm Monitor
subscribes to your equipment’s
Alarm property and is notifi ed
automatically when the fault
situation changes. All informa-
tion concerning the fault is then
assembled to call the LASER
source API, which transmits
the fault to LASER. Using this
information, the Alarm Moni-
tor maintains a list of all faults
currently active, an “active
list”, for the devices it is re-
sponsible for. Additionally, the
Alarm Monitor makes periodic
calls to the LASER subsystem
to ensure that it operates with
the updated alarm information.
Recommendations.
Fault fi elds contain a fault-state

// Two fault-fi elds «badVoltageRef» «regulationFail»

setVoltage::execute(RequestEvent *pEv) {
 MultiplexingContext * pContext =
 pEv->getMultiplexingContext();
 voltageRef = value.voltage;
 bool goodSettings =
 (voltageRef < pDev->maxVoltage.get())
 && (voltageRef > pDev->minVoltage.get());
 if (goodSettings) {
 pWorkingDevice->
 refVoltage.set(voltageRef,pContext);
 } else {
 pWorkingDevice->
 badVoltageRef.raise(pContext);

 // the equipment copes with the situation
 // by maintaining current settings and
 // ignoring new ones, yet alarm is
 // registered and will stay-on until new
 // valid settings are applied by upper layer
 // to whom exception is returned meanwhile.
 throw FesaIOException(«out of range»);
 }
}

AcquireVoltage::execute(RTEvent *pEv) {
 MultiplexingContext * pContext =
 pEv->getMultiplexingContext();
 for (unsigned int i=0;i<deviceCollection.size();
 i++){
 CapacitorDevice* pDev=deviceCollection[i];
 VBoard* pBoard= getVBoard(pDev->hw.get());
 fl oat voltage = pBoard->getVoltage();
 bool badVoltage = (fabs(voltage - pDev->
 refVoltage.get(pContext))>TOLERANCE);
 if (badVoltage) {
 pDev->regulationFail.raise(pContext);
 }
 }
}

A
la

rm
s

Example of context-dependant alarms

// One fault-fi eld named «overheat», associated
// to a Temperature property for diagnostics.
AcquireTemperature::execute(RTEvent *pEv) {
 for (unsigned int i=0;i<deviceCollection.size();
 i++){
 ThermometerDevice* pDev=deviceCollection[i];
 AcqBoard* board= getAcqBoard(pDev->hw.get());
 fl oat temperature=board.getSample();
 if (temperature>pDev->maxTemperature.get()) {
 pDev->overheat.raise(); // raise alarm
 } else {
 pDev->overheat.lower(); // no alarm
 }
 pDev->temperature.set(temperature);
}

Sample code which raises alarms

which is entirely controlled
from your C++ code. Hence if
you raise an alarm, it will stay-
on until you explicitly reset
the fault-fi eld. Therefore you

must make sure that for each
‘raise’ statement, you have a
‘lower’ counterpart, as illus-
trated by the example depicted.

	FesaEssentialsProperties.pdf
	FesaEssentialsProperties.pdf
	Properties. They can be thought of as some public, compound «attributes» of an equipment-class, that a client accesses in read (get) or write (set) mode. The property is more of a virtual attribute in the sense that it’s value is not stored as such by th
	Filter. This is an optional means to specialize the processing being carried-out upon getting or setting the property. When there is no filter attached to the property, the processing is fixed. When the get or set request is transmitted along a filter,
	Server Actions. Whether the property is accessed in get or set mode, its remote invocation causes some server-side processing to occur. In FESA, every object that does something on the server-side is encapsulated as a server-action. Hence, specification
	Get/Set coding. Programming server actions falls into the same mold as for programming real-time actions: the developer needs to implement the execute() method of the action and is provided with an event that carries-out with the context within which the
	Default Get/Set. In certain cases the sole processing associated to getting (resp. setting) a property reduces to multiplexing (resp. de-multiplexing) the composite-data to and from the individual fields. In this case the composite is made of individiual
	How it works. When the equipment server receives are request accross the controls middleware, it first packages it as an event and transmits to a server-action, in fashion which is similar to the way real-time events are handled. It must also be pointed-o
	Recommendations. Properties form the contract that an equipment-class passes to its potential clients. As such great care must be devoted to specifying an interface that will remain stable on the long run. Ideally, this interface shall be agreed-upon bef
	

	3 Property interface

	FesaEssentialsScheduling.pdf
	Properties. They can be thought of as some public, compound «attributes» of an equipment-class, that a client accesses in read (get) or write (set) mode. The property is more of a virtual attribute in the sense that it’s value is not stored as such by th
	Filter. This is an optional means to specialize the processing being carried-out upon getting or setting the property. When there is no filter attached to the property, the processing is fixed. When the get or set request is transmitted along a filter,
	Server Actions. Whether the property is accessed in get or set mode, its remote invocation causes some server-side processing to occur. In FESA, every object that does something on the server-side is encapsulated as a server-action. Hence, specification
	Get/Set coding. Programming server actions falls into the same mold as for programming real-time actions: the developer needs to implement the execute() method of the action and is provided with an event that carries-out with the context within which the
	Default Get/Set. In certain cases the sole processing associated to getting (resp. setting) a property reduces to multiplexing (resp. de-multiplexing) the composite-data to and from the individual fields. In this case the composite is made of individiual
	How it works. When the equipment server receives are request accross the controls middleware, it first packages it as an event and transmits to a server-action, in fashion which is similar to the way real-time events are handled. It must also be pointed-o
	Recommendations. Properties form the contract that an equipment-class passes to its potential clients. As such great care must be devoted to specifying an interface that will remain stable on the long run. Ideally, this interface shall be agreed-upon bef
	

	3 Property interface

