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The new Front-End Software Architecture (FESA) is a comprehensive framework 
for designing, coding and maintaining LynxOS/Linux equipment-software that 
provides a stable functionnal abstraction of accelerator device.

FESA Essentials provides a synthetic overview covering key concepts, sample 
C++ code and check-lists for equipment-specialists to get a fi rst grasp of what 
equipment-software development means when relying on the method, generic 
architecture and tools that constitute the FESA framework.

As a new FESA user armed with the knowledge captured in the essentials, you 
are encouraged to take benefi t of the tools and utilities to jump-start equipment-
software development within hours. Rolling-up your sleeves, you will probably 
fi nd-out that the tools on-line help and tutorials are the natural complement and 
immediate stage after reading this book.
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Equipment software provides a stable and homogeneous functional abstraction 
on top of accelerator equipment (sensors, actuators…) whose hardware imple-
mentation is heterogeneous and evolves over time.

FESA Essentials  © CERN 2004

Particle accelerators are 
fi tted with terminal devices 

that can be sensors, actuators 
or a combination of both. From 
a remote control room, ope-
rators access these devices 
accross the control system 
infrastructure which consists 
of layers of hardware, software 
and communication protocols. 

mentary services equipment-
software renders. The two differ 
very much in nature since the 
former is an on-demand servi-
ce, whereas the latter is subject 
to tight real-time constraints. 
Obviously, request handling 
must run at a lower level of 
priority and shall not be able to 
preempt and wreak havoc with 
the real-time task. In order to 
decouple the two, equipment-
software includes a softwa-
re abstraction of the device. 
Thanks to this abstraction, an 
operator does not directly see 
the hardware device, but rather 
accesses it through its proxy. 
Software Device.  The 
software equivalent of an un-
derlying hardware device is 
a data-holder that contains 
attributes which can be set-
tings, acquisitions, or dynamic 
state-variables, and whose 
values at any given time pro-

vide an accurate snapshot of 
the underlying hardware device. 
Real-time Task. An equi-
pment-software’s core activity is 
to ensure that both the software 
abstraction and its underlying 
hardware device continuously 
refl ect each other’s state at run-
time. Ensuring such a real-time 
correspondence involves infor-
mation fl owing in both directions: 
Controls fl ow from the device 
model and down to the hard-
ware; Acquisitions fl ow from the 
hardware and up to the device 
model. Such transfers are usual-
ly synchronized by the accelera-
tor’s central timing system which 
orchestrates  machine activity. 
Componentization. From 
the above, it turns out that an equi-
pment software function consists 
of three parts: a server compo-
nent implementing request-han-
dling function, a real-time task  
implementing real-time handling, 
and a memory segment embed-

Equipment Software. 
A crucial part of the control in-
frastructure, it is located at 
the junction of two worlds: on 
one hand, it communicates 
with the control-room’s com-
puters and handles operator 
requests (property interface). 
On the other hand, it must 
deal directly with hardware. 
Services. As depicted by 
the use-case diagram below, 
request-handling and hardwa-
re control are the two comple-
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ding the software model of the 
device. This structure is depic-
ted by the diagram on the right. 
Implementation. Deve-
lopment of a new equipment 
software always involves co-
ding the three above-mentio-
ned components: defi ning the 
device model and coding res-
pectively the request-handling 
and real-time handling. For 
performance reasons, C++ is 
the programming language of 
choice for developing real-time 
equipment software targetted 
at LynxOS, a real-time fl avor 
of the Linux operating system.
Code reuse. In spite of 
the overwhelming diversity of 
accelerator equipments, deve-
lopment of equipment software 
exhibits  some routine  work, the-
reby suggesting that some form 
of code-reuse is achievable. 
To this end, object-orientated 
technologies such as those that 
come with C++ provide several 

options: inheritance, delega-
tion and generic programming 
through the means of templates.    
Software frameworks provide 
the ultimate form  of code-reuse.
Framework. This ap-
proach defi nes at defi ning a 
software package that provi-
des a partial yet generic so-
lution that can be tailored, i.e. 
customized, on a case-by-case 
basis in order to suit the spe-
cifi c needs of the equipment 
specialist. A framework makes 
for a software package that 
contains a set of base classes 
that encapsulate the essentials 
or key concepts of equipment-
software. Customization redu-

ces to deriving concrete clas-
ses from these base classes.
Method. Relying on the 
FESA framework requires the 
equipment-specialist to recast 
the problem at hand in  stan-
dard form: what is the structure 
of the equipment data-storage 
and actions; how such actions 
are orchestrated. The analysis 
and design phases consist in 
specifying the equipment model.
Tools. Equipment-modeling 
is supported by a design tool, 
whereas automated code-ge-
neration is used to produce 
C++ code from the high-le-
vel model of the equipment.

class BendingMagnet : public Device() {

 public:

 fi eld<double, USER, PERSISTENT>  magneticFieldRef;
 fi eld<double, USER, VOLATILE>  magneticField;
 fi eld<STATUS, NONE, VOLATILE> status;
 fi eld<double, NONE, FINAL>  maxFieldRef;

};
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Bending magnet software device

Equipment software components
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The framework approach aims at defi ning a software package providing a par-
tial yet generic solution to equipment-software, and which can be refi ned when 
applied to a specifi c equipment.

FESA Essentials  © CERN 2004

Equipment-software deve-
lopment for accelerator 

controls has matured over 
more then fi fteen years and 
exhibits some recurrent de-
sign patterns which the FESA 
framework intends to capture. 

events which acts as a pacema-
ker. At the other end, equipment-
software is here to do something. 
And this ‘something’ can be 
structured as a set of elementary 
actions. Such actions correspond 
to the work-breakdown structure 
of the equipment-software’s job. 
In between the two, one needs a 
scheduler which continuously lis-
tens to the event-source. Whene-
ver an event occurs, the schedu-
ler triggers an appropriate action 
according to some pre-defi ned 
logic. Actions can be further cate-
gorized as being either real-time 
actions, that is to say actions that 

Purpose. The FESA fra-
mework encapsulates recurrent 
aspects of equipment-software 
development as a reusable 
software package that can be 
tailored – or customized – on a 
case-by-case basis. The gene-
ric software package contains 
a set of base classes that en-

capsulate the essentials or key 
concepts of front-end software. 
In this case, customization re-
duces to deriving concrete 
classes from the base classes 
and implementing them to suit 
specifi c needs.  The following 
sections describe the object 
structures and theri interactions 
inherited from the framework, 
and then conclude by listing 
the degrees of freedom given 
to the equipment-specialist  for 
tailoring  the base package.
Static structure. At the 
heart of any equipment softwa-
re activity, there’s a source of 
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2 Framework Basics
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deal directly with the hardware, 
or they can be server-actions 
– that serve and fulfi ll operator 
requests. Software devices pro-
vide a convenient decoupling 
between these two kinds of ac-
tion. A device object is simply 
a data-holder that contains at-
tributes which can be settings, 
acquisitions, or dynamic state-
variables and whose values at 
any given time provide an accu-
rate snapshot of the underlying 
hardware device. These seven 
classes form the backbone of 
the framework’s architecture.
Real-time behaviour. 
The scheduler is continuously 
listening to the event-source.
Whenever an event is fi red, the 
event-source manufactures an 
event-object which is forwarded 
to the scheduler.The scheduler 
examines its type and contents 
and triggers an appropriate 
action by relying on some pre-
defi ned logic.The code of the 
action which is supplied by 
the user updates the device in 

read or write mode.Once the 
action is completed, the sche-
duler consumes the event and 
then waits for another event 
to occur. This whole process 
can be viewed as a simple 
event production-consumption 
scheme whereby the scheduler 
waits for events and consumes 
them by triggering associa-
ted actions. What this diagram 
shows is that this behavior is 
inherited from the framework. 
The only code provided by the 
equipment-specialist corres-
ponds to the hashed activity.
Request-handling. 
On the client-side, equipment 
software provides access to the 
underlying hardware device, 
offering this service as a set of 
pre-defi ned requests that the 
equipment software responds 
to (property access). Request-
types can be classifi ed as fol-
lows: Simple read / write ac-
cess to device variables. Read 
/ write access attached to spe-
cifi c cycle or fi ltering conditions. 
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Logging information access

Treatment request involving 
some on-demand processing 
within the server process, with 
preliminary or subsequent ac-
cess to one or several instance 
variables by the server process.
Customization. In order 
to tailor the framework package 
and apply to a specifi c equi-
pment class, the equipment 
specialist needs to  confi gure 
it with a design tool, and then 
to supply pieces of C++ code 
that implement the actions.

Customizable parts

Part #
Design model 1
Real-time actions 0..*
Server actions 0..*
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Before jumping to the C++ coding stage, development of new equipment 
software with FESA, fi rst involves specifying what the equipment software is 
doing and what its structure is. An equipment specialist carries out this specifi ca-
tion stage using the framework’s design tool. By doing-so he describes the equi-
pment based on some high-level modeling language.

FESA Essentials  © CERN 2004

Design of an equipment 
software component starts 

with recasting the problem at 
hand in a standard-form, which 
consists in asking and answe-
ring recurrent questions: (1) 
What are the published servi-
ces provided by the component 
to the outside? (2) What is the 
software abstraction of the 
accelerator device? (3) What 
are building-blocks, (4) What is 
the real-time behaviour? The 
FESA design tool assists the 
equipment specialist in speci-
fying the equipment from this 
abstract point of view. 

provide a snapshot of the state of 
the underlying hardware device. 
Constitution. Actions are 
the basic work-units of equip-
ment software. They come in 
two fl avours: the real-time ac-
tions are triggered by central-ti-
ming events and interrupts. The 
server actions implement re-
quest-handling. Right from the 
design stage, the equipment 
specialist has to list all the ac-
tion-classes that can be execu-

Equipment specifi cation to-do list

Defi ne a name and version

Defi ne all parts of an equipment’s specifi cation 
with the FESA design tool.

Interface. This defi nes the 
set of services published to the 
outside (clients from the con-
trol-room or middle-tier softwa-
re layer). Designing an equip-
ment’s interface involves listing 
so-called «properties» that can 
be remotely accessed throu-
gh the controls-middleware.
Data. At the heart of any 
equipment-software, the de-
vice-model is a data-holder 
whose attributes continuously 

Model. FESA defi nes a lan-
guage through which an equi-
pment-specialist specifi es an 
equipment design. This lan-
guage is encoded as an XML 
Schema with which the FESA 
tools comply with. The design 
tool enforces all design-cons-
traints defi ned by the FESA 
grammar and lets equipment-
specialists carry-out out their 
design work according to the 
degrees of freedom given to 
them by the metamodel. The 
metamodel is subdivided into 
several complementary areas, 
for which the equipment spe-
cialist has to make some de-
sign choices via the tool.
Information. A FESA  class 
is identifi ed by the combination of 
its name and a version number.
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ted at any one time by the equi-
pment-software component.  
Timing. An equipment-
software component is usually 
synchronized with overall ac-
celerator orchestration by re-
ceiving synchronization events.  
For each class, the equipment-
specialist has to defi ne a list of 
logical events by giving them 
names within the scope of 
the equipment-class.  Linking 
these logical events to acce-
lerator or hardware interrupts 
is left until a later stage when 
the equipment is deployed on 
specifi c front-end computers.
Behavior. After having lis-
ted both the elementary actions 
and the triggering events, the 
equipment-specialist can com-
plete the picture by relating the 
two, i.e. by deciding when and 
which action is triggered upon 
occurrence of an event. This 
last aspect of an equipment-
software’s design is referred to 
as the behavioral specifi cation.
Recommendations. In 
object-orientated software de-
velopment, getting the design-
right from the start is even more 
important than for procedural 
languages such as C.  In many 
cases, all the C++ classes which 
structure the code of an equip-
ment-software will come from 
the design stage through the  
use of automated code-genera-
tion. Afterwards, re-architecting 
the software is hardly feasible. 
Hence it is of paramount impor-
tance that equipment-specialists 
devote time and effort up-front 
to carry-out a careful analysis 
and design. The fact that the 
tool reduces design to fi lling-in 
some forms and clicking on the 
mouse is not a pretext to hasten 
the design but rather an oppor-
tunity to spend more time on it.   
    

A well-formed equipment specifi cation
(interactively created with FESA design tool)
<?xml version=»1.0» encoding=»UTF-8»?>

<equipment-model xmlns:xsi=
 »http://www.w3.org/2001/XMLSchema-instance» 
 xsi:noNamespaceSchemaLocation=
 »../../../MODEL/FESA_metamodel.xsd»>

 <information name=»Trivial» version=»0»/>

 <interface-model>
  <property name=»Acquisition»>
   <composite-data>
    <fi eld-name-ref-data-entry>
     sample
    </fi eld-name-ref-data-entry>
   </composite-data>
   <default-action get-set-type=»get»/>
  </property>
 </interface-model>

 <data-model>
  <device-model>
   <fesa-fi eld name=»sample» 
   multiplexing-criterion=»MUX_NONE_ID» 
   persistency=»VOLATILE»>
    <scalar type=»fl oat»/>
   </fesa-fi eld>
  </device-model>
  <global-store/>
 </data-model>

 <constitution-model>
  <server-action name=»Acquisition»>
   <input-fi eld-ref fi eld-name-ref=
    »sample»/>
  </server-action>
  <rt-action name=»Acquire»>
  </rt-action>
 </constitution-model>

 <timing-model>
  <logical-event name=»AcquisitionTiming»/>
 </timing-model>

 <behavior-model>
  <schedulable-units>
   <rt-action-ref rt-action-name-ref=
    »Acquire»/>
   <trigger>
    <explicit-event-ref 
     logical-event-name-ref=
     »AcquisitionTiming»/>
   </trigger>
  </schedulable-units>
  <scheduling-scheme>
   <event-action-map/>
  </scheduling-scheme>
 </behavior-model>

</equipment-model>
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This chapter summarizes the successive steps for specifying and implementing 
the services that an equipment software publishes to the outside world. The pu-
blic interface of a FESA equipment class is composed of a set of properties. The 
equipment specialist may implement them by either supplying dedicated server 
get/set actions or relying on automated code generation.
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Each FESA equipment 
publishes an interface as a 

collection of get/set properties. 
Operators control the equip-
ment through remote invocation 
of these properties across the 
controls system middleware. 

vidual entries are user-defi ned 
(authorized types are the same 
as those allowed for fi elds) un-
less the name is already reserved 
by a device or global-store fi eld. 
When this is the case, the type 
of the data-entry is constrained 
to be identical to the type of the 
fi eld that bears the same name. 
Filter. This is an optional means 
to fi ne-tune the processing being 
carried-out when getting or setting 
the property. When there is no fi l-
ter attached to the property, the 
processing is fi xed. When the get 
or set request is transmitted, the 
fi lter is used to fi ne tune the treat-
ment of the input (resp. output) 

Properties. These can 
be thought of as some public 
«attributes» of an equipment-
class, that a client accesses in 
read (get) or write (set) mode. 
The property is more of a vir-
tual attribute in the sense that 
its value is not stored as such 
by the equipment. Instead, it 
is computed on demand when 
requested from the client. Get-
ting a property causes the 
property to be computed by 

the server before being trans-
mitted to the requester. Con-
versely, setting a property 
triggers some server-side com-
putation on the input parameter. 
Data. The input (resp. out-
put) parameter which is passed 
when invoking a get (resp. set) 
property is a composite struc-
ture that aggregates one or se-
veral typed data-entries. The 
name and type of these indi-

name the property «MyProperty»

defi ne the composite-data

 OPTION:
defi ne the fi lter

defi ne the get action «GetMyProperty»
 AND/OR
defi ne the set action «SetMyProperty»

choose default implementation or code in C++ 

(            )
[                      ]
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Property interface defi nition to-do list

3 Property Interface
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parameter. The structure of a 
fi lter is the same as for the com-
posite data, apart from the fact 
that its entries never references 
existing fi elds and are instead 
always defi ned within the fi lter’s 
naming scope. As an example, 
fi lters could be used for data 
conversion, low-pass or fi lte-
ring and averaging of measure-
ments, selection or a particular 
signal component or time-win-
dow, or parameters of a signal-
transform (e.g. radix of an FFT). 
Server Actions. Whether 
the property is accessed in get 
or set mode, its remote invo-
cation causes some server-
side processing to occur. In 
FESA, every object that does 
something on the server-side 
is encapsulated as a server-
action. Hence, specifi cation of 
a property always involves at-
taching it to at least a get or a 
set action, or may be both. All 
actions that require non-trivial 
processing (e.g. data shaping 
or logics) must be coded in C++ 
by the equipment specialist.

Get/Set coding. Pro-
gramming server actions falls 
into the same mold as program-
ming real-time actions: the de-
veloper needs to implement the 
execute(Event*) method of 
the action in which the event 
argument carries-out the con-
text within which the action  
occurred. The composite-data 
and the optional fi lter objects 
are accessed within the action. 
The bulk of most server actions 
consist of transferring data in 
between the composite data 
and several fi elds, while ap-
plying some data-shaping that 
may depend on a given fi lter.
Default Get/Set. In cer-
tain cases the sole processing 
associated to getting (resp. set-
ting) a property reduces to mul-
tiplexing (resp. de-multiplexing) 
the composite-data to and from 
the individual fi elds. In this case 
the composite is made of indivi-
dual entries that refer to device 
or global-store fi elds. When this 

is the case, the C++ code that 
implements the property’s get 
and set methods is automati-
cally synthesized from the equi-
pment-design specifi cation.
How it works. When the 
equipment server receives a re-
quest across the controls mid-
dleware, it fi rst packages it as an 
event and transmits to a server-
action, similarly to the way real-
time events are handled. It must 
also be pointed-out that request-
handling activity always runs at 
a lower level of priority than the 
thread or process within which 
the real-time actions execute.
Recommendations. 
Properties form the contract 
that an equipment-class pas-
ses to its potential clients and 
should remain stable in the long 
run.  Ideally, this interface shall 
be agreed-upon before-hand 
with the operators or programs 
that access the equipment. The 
interface should also be simple 
so as to present an abstract 
view of the equipment as seen 
from higher-level controls. For 
this reason, it is also a good 
practice to keep the interface 
short and to gather related data 
into coarse-granularity compo-
site properties rather than to 
scatter information into several 
single-entry properties which do 
not convey enough information 
by themselves. The trouble with 
fi ne-grained properties is that 
they can cause «fragmented» 
traffi c and may require and re-
combination on the client-side. 

GetRawCurrent::execute(RequestEvent *ev) {
 
 BeamCurrentSensor * dev = ev->getDevice():
 MultiplexingContext ctx = ev->getContext();

 this->compositeData.signal=dev->raw.get(ctx);
 this->compositeData.length=dev->points.get(ctx);
 this->compositeData.time=dev->time.get(ctx);

};
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Sample code of a default get

Sample code of a custom get with fi lter
GetFilteredCurrent::execute(RequestEvent *ev) {

 BeamCurrentSensor * device = ev->getDevice();
 MuxContext context = ev->getContext();

 double fc = this->fi lter.cutOffFrequency;
 int n = this->fi lter.order;

 double * rawData = device->raw.get(context);
 int size = device->points.get(context);
 smoothedData = lowpass(fc, n, rawData, size); 
 
 this->compositeData.smoothedCurrent =
  smoothedData;
 this->compositeData.length = dataSize;
 this->compositeData.time = time.get(context);
};
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The real-time behaviour of an equipment-software is orchestrated by a central 
object referred-to as the «Scheduler». You can specify how it behaves by confi -
guring an event-action map which simply associates logical events and real-time 
actions. By relying on this built-in map, you can design your equipment’s beha-
viour without writing a single line of code.

FESA Essentials  © CERN 2004

Earlier on, you learned 
that actions are the basic 

work units, or building-blocks 
or an equipment-software’s 
function. The scheduler puts 
them together and orches-
trates them to form the equi-
pment software behaviour.  

ple (event-name, action-name), 
where the event refers explicitly or 
implicitily to an event, the two ap-
proaches are mixable in the map.
Implicit triggering. Lea-
ving the event-name of an event-
map’s entry blank and replacing it 
with a read-only device-fi eld iden-
tifi er instead means that  the ac-
tual triggering-event is not known 
at design-stage and is postponed 
to the equipment-software com-
ponent is initialized and loads de-
vice-instance parameters into the 
FEC memory. When instantiating 
devices, the value of the «inter-
rupt-fi eld» must be restricted to 
the logical event-names autho-
rized within the class’ scope. 
Device-grouping. An ins-
tance of a real-time action typi-

Scheduling. The real-time 
behaviour of an equipment-
software is inherited from the 
framework, yet it is fully cus-
tomizable by the equipment-
specialist who decides which 
real-time actions execute upon 
occurence of particular events.  
Event-action map. This 
is the standard means for con-
fi guring (i.e. customizing) the 
scheduler. The equipment-spe-

cialists assembles the map by 
succesively entering a list of 
entries, where each entry as-
sociates a particular real-time 
action to an event-name.  This 
map fully defi nes the behaviour 
of the equipment-class, without 
requiring any C++ programming 
by the equipment-specialist.  
Events. Events that appear 
as key in each entry of the 
event-action map are named 
within scope of the equipment-
class. Equivalence between  
such class-scope names and 
machine-level timing names is 
achieved through the means 
of a dedicated table which is 
maintained on a per-FEC basis. 
Explicit triggering. 
Each entry of the map is a cou-

select the standard event-action map 

defi ne the list of class-scope event names

repeat as many times as required:

[                   ]
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Scheduler defi nition to-do list

4 Scheduling 

choose «explicit» triggering by selecting an event-name

select action-class and optionnal device-selector

 OR

choose «implicit triggering» with an «interrupt» device-fi eld

select action-class and a device-selector (implies «interrupt» fi eld)  
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cally manages a set of devices 
which are homoegenous w.r.t. 
some criteria. For instance the 
execute() method of a real-
time action can process at the 
same time a set devices ope-
rating at the same moment. 
On the other hand, physical 
devices are usually connected 
as homogeneous groups, for 
which access from a hardware 
module (VME board, fi eld-bus 
adapter, PLC gateway etc...) 
is carried-out as a block. Block 
access is associated to very 
signifi cant performance gain: 
indeed, the cost for transmit-
ting information over a com-
munication channel or over the 
bus is usually similar whether 
the transaction involves one 

or several device instances.  
Data-transmission. In 
addition to scheduling real-time 
actions supplied by the deve-
lopper, it is also possible to in-
terleave upstream data trans-
missions due to subscribed 
properties. The developer spe-
cifi es when the communication 
action occurs in the same  way 
as for real-time actions. The pro-
cedure is described in the sec-
tion devoted to subscriptions.
How it works. At initia-
lization, real-time actions are 
instantiated and attached to 
groups of devices that meet 
the device-selector require-
ments. Each real-time action 
together with its attached de-

vice-collection  is entered into  
the event-action scheduling 
map. When the same event 
triggers several actions, the or-
der in which they execute  is the 
same as their order in the map. 
Recommendations. 
The scheduler is one of the most 
important parts of the design. In 
order to get it right up-front, it is 
advisable to generate the code 
from the specifi cation and exe-
cute it as soon as possible, even 
before coding the real-time ac-
tions. When specifying device-
selectors, one must ensure 
that there will be no ‘orphan’ 
device, i.e. each device must 
meet at least one of the logical 
conditions and be associated to 
some real-time action instance. 
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Samples of grouping criteria

Sample event-action map confi gurations

Shared criterion Motivation Device-selector
Interrupt Synchronized access of a set of devices 

that need to operate at the same time 
whithin the accelerator’s timing cycle.

(AcqIT==?)

Hardware address Improve data-transmission effi ciency by 
accessing all devices on a same com-
munication-node in one go.

(hwAddress@’GPIB/?/*’)

Both of the above When two-above objectives must be 
fulfi lled simultaneously

((hwAddress@’PLC/?/*’)&&(AcqIT==?))

Samples of grouping criteria

Logical event Real-time action Device-selector
Initialisation Initialize all
fi eld::acqIT Acquire ((acqIt==?)&&(hwAddress@(SIS3003/?/*)))
fi eld::ctrIT Control ((ctrlIt==?)&&(hwAddress@(SIS3003/?/*)))

Logical event FEC Timing event
Initialization * sps.gen.start_cycle
it1 fecF1 sps.rocs.ring.start
it2 fecF1 sps.rocs.ring2.start

Timing confi guration

Device FEC ctrlIT acqIT
dSample1 fecF1 it2 it1
dSample2 fecF1 it2 it1
dSsample3 fecF1 it1 it2

Device instances

Di Dj

device-set D

InitializationInitialize

Acquire Di 

Acquire Dj
Control Di

ControlDj 
acqIT Di 

acqITDj = ctrlIT
Di

ctrlIT
DCi

time
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At the heart of any equipment-software, the device-model represents the soft-ent-software, the device-model represents the soft-ent-software, the device-model represents the sof
ware abstraction of an underlying device. This is a data-holder whose fi elds 
are continuously updated and transferred to and from the hardware in order to 
ensure that the real device and its software proxy refl ect each-other’s state at 
run-time.
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Accelerator-devices are 
functional pieces of equip-

ment which extract some mea-
surements, exert some actions 
on the particle-beam or do a 
combination of both.

Standard fi elds.  Apart 
from two pre-defi ned types dedi-
cated to hardware-address-
ing and implicit-triggering, the 
framework does not impose 
any detailed class hierarchy for 
the standard fi elds. Hence, the 
equipment-specialist has com-
plete freedom for defi ning what 
fi elds actually stand-for. To this 
end, it is important to keep in 
mind the functional purpose of 
each before deciding to make it 
a persistent or a multiplexed one.  
To this end, the table entitled 
«Fields categories according to 
functional purpose» proposes a 
taxonomy of fi elds inspired from 
the standard terminology used in 
the domain of dynamic systems 
and compatible with accelerator 
operations usage.
Multiplexing. The accelera-
tor-complex provides beams to 
several users, making it a shared 
resource that relies on time-mul-
tiplexing scheme orchestrated 
by the central timing-system: the 
basic period of the accelerator is 
split as a set of successive time-
slots during which the settings of 
a specifi c user stay valid. Switch-
ing from on multiplexing context 
to the next is triggered by the tim-
ing system, which in turn causes a 
switch of equipment settings from 
one user to the next. Account-
ing for this multiplexing behavior 
at the device-level requires that 
fi elds accommodate not a single 

Device.  Specifying a prop-
er device-model  is one of the 
most important steps of equip-
ment-software design. Practi-
cally  modelling the device con-
sists in defi ning a set of fi elds. 
Fields. Fields make for the 
fi ne-grained fabrics of the de-
vice-model.  Every piece of in-
formation about the underlying 
hardware-device is stored in 
fi elds.  Fields are full-fl edged 
objects  that provide access 
methods, notably get/set acces-
sors  for C++ specialist code to 
store and retrieve their value.
Type Purpose
standard user-defi ned
hardware addressing
interrupt implicit trigger

Field types

Addressing fi elds. The 
framework defi nes dedicated 
hardware fi elds, which consist 
of a three-part combination of 
type / logical-unit / chan-
nel string fi elds for encoding 
the hardware addressing of a 
device. The type designates 
the hardware board family. The 
logical-unit typically iden-
tifi es the board index within 
the VME crate. The channel
typically refers to a specifi c port 
of the board which is used to 
connect the specifi c device-in-
stance. For devices which are 
connected through  more than 
one hardware-module, it is pos-
sible to rely on up to three sets 
of such address-fi elds. 
Interrupt fi elds. The 
framework also defi nes dedi-
cated interrupt-fi elds, which 
can be referred-to as implicit-
triggers of real-time actions by 
the equipment’s scheduler (see 
chapter on scheduling for de-
tails). The device model may 
refer to one or several interrupt 
fi elds.

Defi ne device hardware addressing as a 
set of hardware-fi eld string triplets of the form:       
(type/logical-unit/channel)

OPTION: defi ne interrupt fi elds

defi ne standard fi elds
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Device modeling to-do list
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but a set of values, namely one 
different value for each different 
user. As illustrated by the above 
code-fragment, such multiplex-
ing-management is transpar-
ent to the equipment-specialist 
whose sole responsibility is to 
defi ne which fi elds are mul-
tiplexed, and with respect to 
which criterion. Possible criteria 
are listed below:
Multiplexing Purpose
NONE not multiplexed
USER cycle user
PARTICLE particle-type
DESTINATION beam-target

Multiplexing criteria

Persistency. Fields are 
accessed to and from the FEC 
memory at run-time. For back-
up and data-management pur-
poses, they can be assigned 
different persistency levels as 
defi ned below:
Persistency Purpose
FINAL database cons-

tant.
PERSISTENT periodic backup 

save into persis-
tent-storage.

VOLATILE RAM data.
Persistency

Standard data-types. 
Data-types are restricted to 
the ones supported across  the 
whole controls system by the 
communication middleware, 
which comprises the  following:
C++ Scalar type Size 
bool 1
signed char (byte) 8
short 16

long 32
long long 64
fl oat 32
double 64

Scalars
Unsigned types are not sup-
ported in conformance with a 
middleware restriction which 
can be traced-back to the fact 
that there are no unsigned 
types in Java.

Array type
bool

signed char
char

short
long
long long
fl oat
double

Uni and bi-dimensional arrays
Types allowed for uni-dimen-
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Field categories according to functional purpose

sional and bi-dimensional ar-
rays are identical to those per-
mitted for scalars, with a major 
difference: the char array type 
is meant as a C-style null-ter-
minated string holder whose 
dimension stands for the maxi-
mum size allowed.
Extended types. In addi-
tion to the standard types, one 
may rely on either custom types 
(e.g. enumerations and bit-pat-
terns) or extended types (types 
brought into the design by in-
heritance). You must be careful 
with such types as they are not 
transmissible as such by the 
middleware.
How it works. Fields are 
managed by the framework 
as C++ template classes. This 
means that fi eld-access does 
not incur the cost of a virtual 
function typical of inheritance 
schemes. This also  means that 
there is no hard  constraint re-
garding the types supported by 
the framework, which are only 
constrained by those required  
by the rest of the system for 
serialization, data-transmission 
and storage. During initializa-
tion, the values of the FINAL
confi guration parameters are 
retrieved from the data-base 
and stored into the FEC’s mem-
ory. PERSISTENT fi elds are re-
stored to the value they previ-
ously held before the reboot.

Category Example Persistency Access
by real-time action by server-action

Confi guration parameter an hardware setting FINAL get get
Operational parameter an amplifi er gain setting PERSISTENT get set (/get)
Acquisition measurements VOLATILE set get
Setting a bending magnetic fi eld PERSISTENT get set (/get)
State-variable past inputs’ shift-register VOLATILE get/set get/set

Taxonomy of fi elds

Field-access code-fragment
// pCtx is an opaque multiplexing-context object
// passed along the action’s triggering event. 
// pDev is a pointer on a device instance

fl oat currentUserVoltage=pDev->voltage.get(pCtx);
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Sensors typically acquire measurements as time-sampled signals and/or on cer-
tain time-windows. When a client or middle-tier program subscribes to a sensor’s 
acquisition property, an upstream communication channel is established through 
which sensory information fl ows. In this section, you will learn how to interleave 
and synchronize this upstream data-fl ow with real-time task activity.  

FESA Essentials  © CERN 2004

Acquisition equipment 
can require signifi cant 

upstream bandwidth and 
CPU resources. Hence, it is 
important for the equipment 
specialist to have control on 
when acquisition data are 
sent across the network. Two 
levels of control are possible 
with the FESA framework: a 
semi-automated upstream 
data-fl ow control scheme or 
a full-custom manual option. 

tify each each individual property 
being updated within a real-time 
action. The framework keeps 
tracks of the changes on its own. 
In the meantime, the equipment-
specialist still has control on 
when the data-transmission ta-
kes place. To this end, the equip-
ment-specialist must enter a two-
stage specifi cation: fi rst defi ne a 
cmwNotifi cation action within 
the equipment-classe’s beha-
viour-model, then defi ne when 
this action is triggered in the 
behavior-model (see fi gure 2).
Manual scheme. In this 
mode of operation, the equip-
ment-specialist is fully responsi-
ble for deciding when and which 
property must be updated, and by 
which real-time action. This provi-
des a fi ner level-of-granularity for 
controlling how upstream com-
munications interleave with real-
time activity. On the other hand, 
it may be tedious to maintain the 
dependencies between proper-
ties and actions manually, espe-
cially in the case where either the 
interface or the action’s imple-
mentation are meant to evolve 
independently from each other... 
How it works. For the ma-
nual mode of operation, nothing 
happens under the hood of the 
FESA framework and how it works 
is really up to the equipment-spe-
cialist. For the automatic scheme, 
a so called Recorder core class 
of the framework keeps track of 

Subscription management to-do list

�defi ne a cmwNotifi cation action, which selects 
the automatic update mode.

�specify when the notifi cation occurs in the be-
havior model

 OR

�do not defi ne any cmwNotifi cation action, 
which selects the manual update mode.

�invoke the property update call from within 
real-time actions that cause a property change

�maintain the above dependencies for each 
subsequent modifi cation of either the property 
interface or the C++ code of server and real-time 

[                        ]

[                        ]

Subscriptions. Any pro-
perty which is served by a get 
action may be subscribed to by 
a remote client. The client ex-
pects to be notifi ed for proper-
ty changes by the equipment 
software. Upon notifi cation, the 
controls-middleware invokes 
the get action and transmits the 
data upward to the remote client.
Automatic scheme. in 
this mode, there is no need for 
the equipment-specialist to no-
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all real-time activity. The Re-
corder is notifi ed at run-time 
of the completion of real-time 
actions and of the context wi-
thin which they were triggered. 
From this dynamic information, 
the list of updated properties is 
maintained by the Recorder. 
This involves property-action 
relationships built-up at initia-
lization from static information 
coming from the model about 
dependencies between actions 
and fi elds. When the cmwNo-
tifi cation action is triggered 
in accordance to the equiment 
class’ behavior model, it causes 
subscribed properties to be ac-
cessed in get-mode. At the same 
time, it resets the update-history 
maintained by the Recorder. 
Recommendations. 
Grouping data is an effi cient 
way to improve transmission 
over a packet-switched network.
It is better to group pieces of in-
formation that are meant to be  
subscribed-to by remote clients 
as composite properties rather 
then to scatter them in nume-
rous, low-granularity properties.

class Acquire: public RTAction<RTEvent, BeamSensor>;

Acquire::execute(RTEvent *ev) {

 BeamSensor* device = ev->getDevice();
 MuxContext ctx = ev->getContext();

 for (unsigned int i=0; i<devCol.size(); i++){
  BeamCurrentSensor* dev=devCol[i];
  AcquisitionBoard* board=
   AcquistionBoard(dev->hwAdress.get());
  fl oat current=board.getSample();
  dev->cur.set(ctx,current);
 }

 // updating the «current» fi eld implies
 // that the following properties are also
 // updated for the device-collection managed
 // by the Acquire instance.

 Current.update(ctx, devCol);
 CurrentAverage.update(ctx, devCol);

};

Example of Automatic property update interleaved with subscriptions

Example of manual property update

Property name Data GetAction Output fi elds
Current cur GetDefault irrelevant
CurrentAverage averageCur GetCurrent cur

timeWindow
Interface-modelextract (properties and associated get-actions)

Logical event Action Device-selector
fi eld::crtlIT Control ((hwAddress==?)&&(ctrlIt==?))
fi eld::acqIT Acquire ((hwAddress==?)&&(acqIt==?))
Reset Init *
endOfCycle cmwNotify * (implicitly those devices for which property changed...)
Reset cmwNotify * (implicitly those devices for which property changed...)

Behaviour-model extract

class BeamSensor : public Device {
 fi eld<HWADRS,NONE,FINAL>   hwAdrs; 
 fi eld<int,NONE,FINAL>   ctrlIt;
 fi eld<int,NONE,FINAL>   acqIt;
 fi eld<fl oat,TGM_USER,VOLATILE>  cur;
};
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Real-time actions transfer data to (resp. from) the hardware device and from 
(resp. to) its software counterpart through hardware interface modules. They 
do so within a loop involving a subset of devices which are grouped according 
to some pre-defi ned criteria. There is usually one instance of a real-time action 
class per homogeneous subset of devices.
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involves all devices attached to 
the real-time action instance. 
This set of devices is referred 
to as the action’s deviceCol-
lection. Sample C++ code for 
the device-loop is depicted in the 
«device-loop» code fragment 
shown on the next facing page. 
Wake-up context. The 
multiplexed nature of accelerator 
usage means that the same ac-
tion may be invoked from within 
different multiplexing contexts of 
the machine. In turn, this implies 
that the fi eld’s storage for set-
tings and acquisitions may differ 
between two successive invo-
cations of the real-time action’s 
execute(RTEvent *) meth-
od. As discussed in chapter 12, 
FESA allocates several slots for 
multiplexed fi elds, each slot be-
ing dedicated to one specifi c us-
age-context of the fi eld. In order 
to let the real-time action work-out 
the appropriate slot, the  event 
embeds a MultiplexingCon-
text object containing informa-
tion about the machine context. 
As a matter of fact, the real-time 
action does not need to decode 
the context,  which means that 
the equipment-specialist shall not 
worry about the actual context 
passed when implementing the 
execute(RTEvent *) meth-
od.  Instead the framework does 
it transparently for him when he 
invokes the fi eld’s get and set
methods by and transmits the 

Real-time Actions. They 
are the basic work-units of the 
equipment-software’s real-time 
task., i.e. any real-time handling 
activity is eventually broken-
down as a set of elementary 
actions.  For each action class, 
say MyAction, the equipment-
specialist has to implement 
in C++, the body of a MyAc-
tion::execute(RTEvent 
*) method. The input pa-
rameter of this method refers 
to an RTEvent  object that 
carries with it the wake-up 

context  within which the ac-
tion is invoked by the frame-
work’s real-time scheduler. 
Device-collection. For 
each front-end on which an 
equipment class is deployed, 
a set of device instances are 
confi gured. An instance of a 
real-time action class typically 
manages a group of devices 
that are homogeneous with re-
spect to certain grouping crite-
ria (e.g. devices connected to 
the same communication-node 
or hardware module or devic-
es that need to operate at the 
same time). There can be as 
many instances of a given ac-
tion class as there are homoge-
neous groups resulting from the 
scheduler’s device-selectors.
Device-loop. Transfers 
take place in a device loop which 
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The set of real-time actions 
defi nes the work-break-

down-structure of an equip-
ment software’s real-time 
task. Implementing them is 
the main C++ coding task 
for the equipment-specialist. 

Identify the minimal information which is suf-
fi cient to convey understanding of the normal 
course of execution of your program. Register 
such pieces of information with INFO statements 
appropriately located in your code.

Identify what could go wrong at run-time.For 
each situation, list the pieces of information ne-
cessary to pin-point the source of the problem 
and insert one or several DEBUG, WARNING, 
ERROR and FATAL statement to register them 
precisely. 

Logging to-do list
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Real-time action sample

context as a parameter (see 
chapter about multiplexing).
Hardware access. 
Within the device-loop, the 
real-time action transfers data 
between a device’s fi elds and 
«appropriate» channels of 
the hardware module. Find-
ing-out the appropriate chan-
nel is achieved by decoding 
the  hardware-addressing fi eld 
of the current device-instance.
Error handling. Several 
abnormal situations may occur 
within the course of running the 
body of the execute(RTEvent 
*). Refer to the chapter 
on logging to fi nd out how 
to report such situations.
How it works. Invoca-
tion of the real-time action’s 
execute(RTEvent *) meth-

// This example supposes a specifi c kind of analog measurement devices
// which are connected through a set of VME acquisition boards 
// (one VME board manages one or several devices, each device being
// connected to one specifi c channel of the board). It is assumed
// that the on-board buffer of each acquisition board samples
// inputs from all devices at the same time.

Acquire::execute(RTEvent * pEv) {

 try {

  // Perform block-access of the VME board, which is shared by
  // the device-collection managed by this instance of Acquire.

  // Board’s logical unit number can be asked to any, e.g. fi rst device
  Board* pBoard = Board::getBoard(deviceCollection[0]->hw1_lun.get());
  Buffer buffer = pBoard->getBuffer(ALL_CHANNELS);

 }
 catch(...){
  log<<«Failed to retreive buffer from acquistion board»<<endError; 
  return;
 }

 for (unsigned int i=0; i<deviceCollection.size(); i++){

  VacuumSensorDevice* pDev=deviceCollection[i];

  fl oat measure = buffer.extractChannelDataAsFloat(pDev->hw1_ch.get());
  pDev->pressure.set(measure);

 }

};

od at the specifi ed time is en-
sured by the framework sched-
uler which also transmits the 
triggering event. The current 
mono-thread execution model 
of the framework lies on the 
assumption that the duration 
of each real-time action is neg-
ligible when compared to the 
repetition-rate of the triggering 
interrupts. The equipment spe-
cialist is responsible for making 
sure that the assumption practi-
cally holds. To this end, he has 
to check that the timing require-
ments of his equipment do not 
lead to an over-run situation.
Recommendations. 
Real-time actions are meant to 
be implemented as indepen-
dent, possibly reusable  C++ 
classes. The standard way to 
“compose” them together is to 

attach them to the same trigger-
ing event at the scheduler-level, 
in which case they are invoked 
in defi ned sequence. Real-time 
actions can also exchange infor-
mation by sharing fi elds. On the 
other hand, C++ theoretically 
also makes it feasible to rely on 
(a) delegation to custom handy 
classes and (b) implementa-
tion-inheritance amongst real-
time actions. Such approaches  
are strongly discouraged. They 
can all too often be  abused and 
misused. They result in tight 
couplings among custom ac-
tion-classes which makes them 
hard to reuse elsewhere. Fur-
thermore elaborating the C++ 
class hierarchy beneath the 
framework buries it into your 
C++ code without any visibility 
at the design-document level. 
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Logging’s purpose is for an equipment-software component to notify «interested 
parties» that something noteworthy, unusual, or abnormal occurred within the 
course of execution. To this end, FESA defi nes an API and mechanism for devel-
opers to log run-time information with a range or severity levels that conform to 
the log4j standard.
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Logging-support takes the 
form of a log class derived 

from C++ style string-streams. 
This makes logging similar to 
writing messages to the stan-
dard output, apart that it also 
requires setting a severity level. 

call of the form: log<<«this is 
an error»<<endError, where 
endError marks the end of the 
error message. The stream can 
be fed-in with character strings 
as well as with numeric types, 
whose conversion and formatting 
into character strings is automatic.
Logging levels. FESA di-
rectly borrows logging levels from 
the log4j standard (http://ja-
karta.apache.org/log4j/
docs/api/index.html). As 
registered in the table on the 
facing page, there are fi ve such 
levels, namely DEBUG, INFO, 
WARNING, ERROR, FATAL. Set-
ting the appropriate level consists 
in terminating each logging mes-
sage with a dedicated ending. 
How it works. Messages 
logged through the C++ << op-
erator fl ow-in into a local stream-
buffer. This local buffer is kept into 
local memory until the stream is 
explicitly fl ushed by terminating 
the log with an endDebug, end-
Info, endWarning, endError 
or endFatal. Until encountering 
such an ending call, the local buf-
fer progressively grows-up and 
consumes memory in order to ac-
commodate the increased string. 
It is therefore assumed that the 
equipment-specialist makes sure 
that the logging of each message 
is followed by an appropriate 
ending. In case, the equipment-
code fails to do so due to a pro-
gramming oblivion, some built-in 

Logging  objects. Equip-
ment-specialists can log run-
time information messages by 
relying on a dedicated log ob-
ject.  Logging objects are  avail-
able from  the four different loca-
tions in which the specialist can 
place some custom code:  from 
within  the execute() method 
of a server-action, from within 
the execute() of a real-time 
action, from within the specif-
icInit() method of  an equip-
ment’s interface part, or from 
within the specifi cInit() 
method of an equipment’s real-

time part. In each situation, 
the logger is accessed in the 
same fashion as a local log 
object. However, there are ac-
tually four distinct logger object 
instances, one for each of the 
four usage context mentioned 
above. Note that all server-ac-
tions share the same log object. 
Similarly, there is  one single 
log object shared by all real-
time actions (see facing table).   
Logging API. The log ob-
ject inherits from the C++ string 
stream class (ostrstream), 
which implies that logging mes-
sages can be sent  to the log-
ging-system in a fashion much 
similar to the way one writes 
into a standard C++ stream 
such as cout. This means that 
logging an error for instance, is 
achieved with a stream output 

Identify the minimal information which is suf-
fi cient to convey understanding of the normal 
course of execution of your program. Register 
such pieces of information with INFO statements 
appropriately located in your code.

Identify what could go wrong at run-time. For 
each situation, list the pieces of information nec-
essary to pin-point the source of the problem and 
insert one or several DEBUG, WARNING, ERROR 
and FATAL statement to register them precisely. 
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Logging to-do list

10 Logging



FESA Essentials  © CERN 2004 21

mechanism may force the fl ush 
whenever the internal stream 
buffer size exceeds some pre-
defi ned limit. In this case, the 
message is logged at WARNING 
priority and complemented with 
an indication of the stream’s 
forced fl ush. Each equipment-
class deployed on a given front-
end computer possesses its 
own of set of four log objects 
as described above. On the 
front-end computer, logging in-
formation from different equip-
ment-software components is 
channelled through a message 
queue and dumped into fi les by 
a couple dedicated process-
es which perform some time-
stamping. Accuracy of such 
automatic time-stamping is ap-
proximative as it not applied at 
the source. Files are allocated a 
confi gurable maximum length, 
which means that information 
may be lost after some time.
Recommendations. 
Do not overlook logging as 
this is the primary and almost 
sole means whereby you can 

equipment, on the other hand. 

AcquireTemperature::execute(RTEvent *ev) {
 
 log << «acquire temperature» << endInfo;

 for (unsigned int i=0;i<deviceCollection.size();  
  i++){
  ThermometerDevice* pDev=deviceCollection[i];
  AcqBoard* board= getAcqBoard(pDev->hw.get());
  try {
   fl oat temperature=board.getSample();
   if (temperature<0.0) {
    log  << temperature
     << « is too cold!» 
     << endWarning;
   }
  } catch (...){
   log  << «accessing thermometer »
    << pDev->name.get()
    << endDebug;
   log << «fail to access board»
     << dev->hwAddress.get()
    << endError;
  }
}
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Sample code with several logging statements

equipment, on the other hand. 

Logging levels and fi les

Severity Purpose C++ marker
DEBUG «fi ne-grained informational events that are most useful to debug 

and application».
endDebug

INFO «informational messages that highlight the progress of the appli-
cation at coarse-grained level».

endInfo

WARNING «designates potentially harmful situations». endWarning

ERROR «designates error events that might still allow the application to 
continue running».

endError

FATAL «designates very severe error events that will presumably lead the 
application to abort».

endFatal

Severity levels, as copied from the log4j standard (http://jakarta.apache.org/log4j/docs/api/index.html)

Log fi le Purpose File type
RtLog records log information from all real-time actions. FIFO
ServerLog records log information from all server-actions. FIFO
InitRtLog records log information from the initialization-stage of the equip-

ment-software’s real-time component.
static after ini-
tialization.

ServerLog records log information from the initialization-stage of the equip-
ment-software’s server component.

static after ini-
tialization.

Logging fi les available for each equipment-class on a given front-end computer

convey detailed information 
about what is going-on once 
your equipment is deployed 
and running. At development 
and debugging stage, it may 
be tempting to bloat your code 
by scattering messages you 
fi nd  useful in order to get your 
code right but which may prove 
useless afterwards. Hence, ad-

equate logging is probably bet-
ter thought-of at a late stage of 
the development cycle, once 
the code is stabilized. You 
may then make sure that log-
ging messages convey coarse-
grained information about the 
normal course of execution on 
one hand; fi ned-grained  de-
tails that help you diagnose the 



6

E
s

s
e

n
ti

a
ls

When some classes of equipment software exhibit functionnal, structural or be-
hvioral similarities, this suggests code reuse or some form of sharing. FESA mo-
deling language supports inheritance to reuse model-parts of existing classes.
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the operators and middle-tier. By 
doing so, you let applications ac-
cess your equipment in the same 
fashion they already access the 
base class.  Inheriting properties   
means that you assign the same 
set of properties together with 
their composite data and filter 
structures to the new equipment 
class. This is however a pure in-
terface inheritance: the get and 
set actions that implement the 
properties (default or custom) do 
not come together by default and 
you’ll have to either re-implement 
them or to inherit other comple-
mentary parts (see below).
Field inheritance. The 
next logical step after inherit-
ing properties is to inherit fields 
(possibly with custom data-
types).   You may want to inherit 
all the fields of the device-model. 
Alternateky, you may only re-
quire a subset of those fields.
Action inheritance. Once 
a class inherits a set of fields de-
fined by other classes, one may 
consider the third level of inheri-
tance: inheriting the implementa-
tion code of actions. A prerequi-
site is that the input and output 
fields attached to the actions are 
defined by the equipment-soft-
ware class. Both server and real-
time actions can be inherited. 
Since the C++ code is  based 
on templates, the very same ac-
tion code will indeed work with 

FESA inheritance. Con-
trary to the common form of in-
heritance encountered in C++ 
for which refining a general class 
into a more specialized one 
simply consists in making the 
latter inherit from the latter, one 
must be more cautious when 
dealing with inheritance within 
the FESA framework. Indeed 
stating merely that “a class of 
equipment software B inherits 
from  another class B” does not 
mean anything in this context. 
You have to be more specific 
here, i.e. do you want to inherit 
the interface of the equipment-
software? it’s device model? its 
set of server-actions? its set of 
real-time actions? its behavior? 
Or do you want to inherit ev-
erything all at once?  The short 
answer to all these questions is 
that in FESA you never inherit 
completely one class from an-
other one (albeit you can start 
a design by copying a refer-
ence one). Rather, inheritance 
of a new equipment-class is 

achieved bit-by-bit, i.e. you can 
elaborate a new class by picking 
parts of a design here and other 
parts there, from several other 
classes. The kinds of building 
bricks you can “inherit” from are 
listed in the following sections.
Extend or implement?  
May be the first question to ask 
yourself when talking about in-
heritance is whether you need 
to inherit from an interface or 
from an implementation. In 
Java the two options are distun-
guished by different keywords: 
“implement” refering to the for-
mer, “extend“ referring to the 
latter. In C++, the two notions 
are dealt-with with pure virtual 
(abstract) and virtual methods. 
With FESA, the choice first de-
pends on the class you inherit 
from: full-fledged equipment-
classes possess both an in-
terface and an implementation 
whereas there are pure inter-
face classes. Second, it even-
tually goes down to which mod-
el-parts he picks-up from them. 
The diagram shown on the next 
facing page illustrates the two 
approaches of interface and 
implementation inheritance.
Property inheritance. 
This is probably the most impor-
tant form of inheritance. You use 
it when you want to provide  a  
new class with an existing (and 
perharps long-used) interface to 
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The FESA framework is 
based on inheritance: an 

equipment-specialist applies 
and tailors the framework 
by deriving concrete classes 
from a set of core abstract 
classes. This chapter pre-
sents a means for equipment 
specialists to achieve custom 
code-reuse through the same 
means of OO inheritance. 

Preliminary proposal 

for internal discussion
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any concrete class of device. 
Behavior inheritance. 
This option is theoretically fea-
sible. In the case the new equip-
ment class does only defines 
server-actions, as in the illus-
tration above, it makes sense to 
inherit real-time behavior. Oth-
erwise it may be very intricate to 
decide how inherited real-time 
actions interleave with the ones 
introduced by the derived  class.
Copy vs inheritance. 
In some cases, you  simply 
want to start a new design from 
an existing template, in which 
case you are more interested 
in copying bits of other equip-
ments and assemble those 

parts within the new class. What 
you can do with inheritance 
(i.e. picking these and those 
parts from other classes), you 
can do it with copy. The differ-
ence is that inheritance implies 
a reference and a long-term 
relationship between the base 
class and its derived sub-class, 
whereas copying is a one-shot 
decision with no further binding. 
If you are not sure, you should 
go for the copy approach then 
for inheritance since it creates 
some burden in the long run.
How it works. Inherit-
ing parts of a design from an-
other existing class draws 
a reference from the former 

to the latter, which means 
that any subsequent change 
to the base class will be re-
flected in the derived classes.
Recommendations.  In-
terface inheritance is advisable 
once a clear set of interfaces has 
been established by operation. 
In the meantime, be very care-
ful when attempting implemen-
tation inheritance since things 
can then get complicated and 
hard to maintain: any subse-
quent change to the base class 
may have  disastrous impact on 
all the derived classes. When-
ever you think about relying on 
inheritance, also ask yourself 
whether  a mere copy would do.
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Synchronization of a software equipment is a deployment issue which com-
plements the scheduler’s confi guration. The latter step binds actions to logical 
events, named within the equipment class’ scope. The former step associates 
logical events to the underlying machine events that orchestrate the whole acce-
lerator’s activity.
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the accelerator’s central timing 
system. The latter type of source 
is the most important in that it is 
the standard means for synchro-
nizing an equipment software 
activity with  the overall orches-
tration of the accelerator-com-
plex activity. Confi guration of the 
timing event sources involves 
the following. Specifying the 
scheduler’s confi guration con-
sisted in entering a list of event-
action couples, where the event 
could be either explicit or implicit. 
Explicit triggers. Explicit 
triggering means that the real-
time action is executed whenev-
er the timing event-source fi res 
an event whose logical name is 
identical to the one specifi ed by 
a given event-action fi ring rule. 
Implicit triggers. This links 
an action to a custom-defi ned de-
vice fi eld. The fi eld value  of each 
device instance is restricted to be 
one of the logical event names. 
This constraint is enforced by the 
FESA device-instantiation tool.
Event-binding. This is a 
deployment-stage confi guration 
that temporally connects your  
equipment’s behavior to the un-
derlying machine activity. For 
each deployment-unit, i.e. for 
each pair (front-end computer, 
equipment class), a map associ-
ates the class’s logical events to 
corresponding machine events. 
This map consists of a set of 

Accelerator timing. 
The central timing system is 
responsible for the temporal 
coordination of the accelera-
tors’ complex.  This system 

manufactures machine events 
which are distributed across a 
dedicated timing network to the 
various front-end computers.   
Event sources. The 
FESA framework features  a set 
of pre-defi ned event-sources: a 
periodic event source whose 
repetition rate is customized by 
the equipment-specialist, and 
several timing event-sources 
(one per timing-domain) which  
fi re at a pace synchronous with 
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Synchronization confi gura-
tion attaches an equipment 

software to the central tim-
ing system of the accelerator 
complex. This synchronizes an 
equipment-software’s real-time 
activity with the overall orches-
tration of the machine.  

Synchronization to-do list
PREREQUISITE:

defi ne explicit triggering rules in scheduler
 AND/OR
defi ne implicit triggering-rules in scheduler

FOR EACH DEPLOYMENT UNIT FEC&CLASS :

defi ne the timing domains known on FEC

defi ne the synchronization binding as a set of 
pairs (logical event, timing event)

OPTIONAL: in case of implicit triggers only

FOR EACH DEVICE-INSTANCE ON A FEC :

select triggering fi eld’s value from set of  
logical events available on the FEC.
 

[                      ]
[                     ](                       

[                      ]
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Synchronization information sample

pair entries (logical event, tim-
ing event). Once this mapping 
is done, you can think as if the 
timing event-source manufac-
tures and fi res event-objects 
that bears logical event names, 
converted on-the-fl y from 
the incoming event names.
Timing domains. Dif-
ferent parts of the accelerator-
complex form different timing 
domains. The central timing sys-
tem broadcasts different pieces 
of information across the timing 
network to these domains. Each 
equipment software compo-
nent deployed on a given front-
end computer must register to 
one or two of them (the latter 
case is typical of equipment 
operating on a transfer-line).
Timing controls. In ad-
dition to being a source of ma-
chine events, the local hard-
ware components of the timing 
system are programmable and 
they feature an interface for 
equipment software to fi ne-tune 
delays after which events fi re. 
To this end, the equipment class 
relies on delegation: at design-
stage, the equipment specialist 
can declare that the equipment 

class is dependant on the timing 
control class (see the chapter 
on composition), at either the 
device-level or the equipment-
software-level. In the former 
case, the device model must 
defi ne a fi eld that holds the 
name of the associated timing 
equipment.  In the latter case,  
the fi eld in question must be part 
of the global (class-level) data-
store. In both cases, the con-
trol of the remote timing device 
is performed within a real-time 
action’s execute(RTEvent 
*) method.   The API for con-
trolling the remote timing ob-
ject is  documented separately 
by the timing equipment class. 
How it works. At initializa-
tion, the equipment-software 
retrieves confi guration fi les 
(extracted from the data-base) 
for  the front-end computer on 
which it runs. A fi rst fi le contains 
the timing confi guration con-
taining a list of timing domains  
as well as the binding between 
logical events and low-level tim-
ing events. A second fi le con-
tains the set of device installed 
on the front-end computer. Af-
ter initialization, the scheduling 

map converts the list of logical-
event keys by the correspond-
ing low-level timing event keys. 
Hence, the specifi ed sched-
uling scheme is translated 
for the actual timing context.
Recommendations. 
Before testing a new equipment 
software on the machine, per-
forming some tests with a simu-
lated event-source can be use-
ful. This makes for a controlled 
environment within which the 
equipment specialist can stim-
ulate at will its equipment with 
a variety of timing situations.   

Logical event
BeamStart
BeamEnd
Forewarning
Initialization

Timing-model

Name fi eld::acqIt fi eldCtrlIt
dev1 BeamStart BeamEnd
dev2 (slow) Forewarning BeamEnd
dev3 BeamStart BeamEnd
dev4 BeamStart BeamEnd
dev5 BeamStart BeamEnd

Some device instances

Trigger Real-time action Device-selector
Initialisation Initialize all
fi eld::acqIt Acquire ((acqIt==?)
fi eld::ctrlIt Control ((ctrlIt==?)

Behavior-model

Logical event Underlying timing event
BeamStart pix.sinj
BeamEnd pix.apow
Forewarning pix.fpow
Initialization -

Deployment of the equipment-class on a FEC
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From a control-room computer, an equipment class is accessed across the con-
trols-middleware via device handles through a narrow interface. On a front-end-
computer, it is possible to link an equipment’s interface library and access an 
equipment class in a similar fashion.  

FESA Essentials  © CERN 2004FESA Essentials  © CERN 2004FESA Essentials 

trols-middleware, it does it over a 
device handle which is provided 
by the RDAService. Sample 
code is given on the next page. 
The controls-middleware  ensures 
marshalling of the request across 
the network. When it reaches the 
FEC, the request is processed 
by relying on the  MyEquip-
mentInterface that repre-
sents the class, in a fashion simi-
lar to the one described above.
How it works. The con-
trols-middleware’s server may 
be linked against one or several 
FESA classes.  Client programs 
issue requests on a specifi c de-
vice-name. When the  middle-
ware server  receives the request, 
it invokes a method of the Ab-
stractEquipmentInterface
which returns  a reference to the 
concrete MyEquipmentInter-
face that manages the device. 
Then the controls middleware re-
trieves both the request’s device 
and property, and invokes the get 
or set method on it.   Hence, there 
is no much difference whether  
your equipment is accessed lo-
cally or remotely as illustrated by 
the two types of code-fragments 
shown on the next page. How-
ever, going through the middle-
ware supports subscriptions, 
which is not the case  otherwise.

Equipment access. 
Each specifi c equipment soft-
ware MyEquipment features a 
concrete class MyEquipmen-
tInterface, inheriting from 
a base-class of the framework, 
AbstractEquipmentInt-
erface, and which is respon-
sible for providing access to 
the equipment’s properties. 
The C++ implementation of this 
class is automatically generated 

from the equipment’s design. All 
equipment-access requests em-
anating from a remote or local 
client end-up as calls to this My-
EquipmentInterface class. 
Local access (C++).  In 
order to access an equipment 
from within a local front-end ap-
plication written in C++  you have 
to link your program against the 
server-library component of 
this equipment. Your code fi rst 
needs to obtain a reference on 
the  MyEquipmentInterface
object. Once you get this inter-
face, you may require any de-
vice instance or property of the 
equipment-class from it. Sample 
code is given on the next page. 
Remote access (C++ 
& Java). When a client  
program  accesses an equip-
ment-software through the con-

E
s

s
e

n
ti

a
ls 1177 Equipment Access

Equipment software is 
realized by a set of binary 

components: the equipment 
interface (or server) and the 
real-time task. The two can 
be deployed in separate 
processes communicating 
through a third, shared-me-
mory component. A front-end 
C++ application may link 
against an equipment interface. 

Link your C++ application against the respec-
tive FESA server libraries of one or several equi-
pment classes you need to access from within 
the application.

 In the C++ application:

instantiate the specifi c equipment-interface 
objects for each equipment class.

Retreive properties and devices.

Invoke get/set methods on these interfaces.

[ objects for each equipment class.[ objects for each equipment class.

                     ]
 methods on these interfaces.

]
 methods on these interfaces.

To-do list for accessing an equTo-do list for accessing an equT ipment locally
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Remote access from a Java application running in a control room computer
import cern.cmw.rda.client.*;
import cern.cmw.*;

public class get

{
 public static

 void main(String[] args){

  String deviceName=«thermometer1»;
  String property=«Temperature»;
  String cycle=«CPS.USER.SFTPRO»;

  RDAService rda=RDAService.init();
  DeviceHandle device=rda.getDeviceHandle(deviceName);

  Data temperature=device.get(property,cycle);
 }
 
};

#include <ThermometerEquipmentInterface.h>

int main(int argc, char ** argv) {

 ThermometerEquipmentInterface 
  thermometerInterface(«Thermometer»);

 thermometerInterface.init(type, argc, argv);

 string deviceName(«thermometer1»);
 
 Property * pProp;

 Device* dev = thermometerInterface.getDevice(deviceName);

 RequestMultiplexingContext ctx(«CPS.USER.SFTPRO»);
 
 pProp = thermometerInterface.getProperty(«Temperature»);
 rdaData data1;
 pProp->get(dev, ctx, &f, &data1);
 fl oat temperature=data1.extract(«temperature»);
};

Local access from a C++ application running on the same front-end computer
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The purpose of alarms is to notify interested parties of faults, which are detect-
ed by an equipment-software component, so that corrective action can be taken 
according to the priority of the fault.  To this end, FESA relies on dedicated fi elds 
and properties for equipment-specialists to raise alarms to the LASER system.
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Alarms-support takes the 
form of dedicated alarm 

properties and associated fault-
fi elds. This means that alarms 
are dealt-with in the same way 
one deals with standard prop-
erties and fi elds. 

Alarm system. FESA pro-
vides a front-end layer to the 
underlying LASER alarm-sys-
tem, which  defi nes its own 
protocol and API. Although this 
FESA layer insulates you from 
dealing directly with the LA-
SER interface, you need to be 
aware about how alarms are 
transmitted and processed.    
Alarm properties. You 
can introduce alarm properties 
into your equipment model in the 
same way as regular properties. 
Every alarm property automati-
cally retrieves the state of its as-
sociated fault-fi eld together with 
the fault time-stamp. Alarm prop-
erties are notifi ed by server ac-
tions and  real-time actions and 
the association between alarm 
properties and actions needs to 
be specifi ed in the device design.
Fault-fi elds. You specify  
possible faults as dedicated fault-
fi elds in your design. As the other 
FESA fi elds, fault-fi elds may be 
multiplexed in case you want to 
restrict a fault to a particular op-
erating context of the accelera-
tor. The LASER API identifi es all 
faults by the fault triplet: the de-
fault mapping is as follows: (1) 
your equipment’s class name 
stands for fault family (FF), (2) 
the device-name stands for fault 
member (FM);  and a descriptive 
text fi eld must be supplied by you 
when defi ning the device class. 

Alarms. During the course 
of execution of an equipment-
software program, several 
faults may occur. For instance, 
some hardware component 
may fail, some parameters may 
leave their allowed range, or 
the software may raise some 
exception. In such cases, you 
don’t know or don’t want to  
handle the situation within your 

equipment-software code and 
need to transfer the responsi-
bility of deciding how to cope 
with or remedy what you ob-
serve to the people in charge 
of operating and monitoring the 
accelerator. This means that 
raising alarms is different in 
purpose than logging.  When 
you raise an alarm you want 
to communicate its description 
to operators of the accelerator, 
equipment specialists or any 
other party that is responsible 
for correcting and responding 
to the fault state. Hence, you 
must make sure that the list of 
faults is well understood and 
accepted by them before-hand. 

With the design-tool, add the Alarm properties.

In your design’s data-model, register a fault-fi eld 
for each fault (hardware failure, harmful operating 
point...) your equipment notifi es.

Confi gure actions that trigger the Alarm properties 
by making sure they reference them, as usual.

Ensure that all interested parties approve your 
alarm model, and provide in collaboration with them 
complementary pieces of information. 

In C++ code raise alarms by setting fault-fi elds to 
true. Lower them by setting-fault fi elds to false. 
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Alarms to-do list

18 Alarms



FESA Essentials  © CERN 2005 37

Fault-invalidation of 
regular properties. 

The fact that some fault-fi eld 
is set “on” may indicate that the 
device is not properly function-
ing - the consequence of this 
is that using normal properties 
(which means reading or writ-
ing) may not be reliable. You can 
declare at the design stage that 
a given property is conditional 
to some selected set of faults. 
FESA automatically checks 
whether any of the related fault-
fi elds is in the “set” state and 
will throw an exception, instead 
of allowing you to set or get a 
value that may be unreliable or 
even have no meaning at all.
Time stamping.  If the 
UTC time is available in the 
equipment, the fault-fi elds are 
stamped with the time the fault 
state is generated and this time 
is communicated as part of the 
whole fault information to the 
Alarm Monitor. The Alarm Moni-
tor uses this timestamp as the 
‘LASER user timestamp’ when 
the fault state is sent to LASER.
How it works. A compo-
nent called the Alarm Monitor 
subscribes to your equipment’s 
Alarm property and is notifi ed 
automatically when the fault 
situation changes. All informa-
tion concerning the fault is then 
assembled to call the LASER 
source API, which transmits 
the fault to LASER. Using this 
information, the Alarm Moni-
tor maintains a list of all faults 
currently active, an “active 
list”, for the devices it is re-
sponsible for. Additionally, the 
Alarm Monitor makes periodic 
calls to the LASER subsystem 
to ensure that it operates with 
the updated alarm information.
Recommendations. 
Fault fi elds contain a fault-state 

// Two fault-fi elds «badVoltageRef» «regulationFail»

setVoltage::execute(RequestEvent *pEv) {
 MultiplexingContext * pContext = 
  pEv->getMultiplexingContext();
 voltageRef = value.voltage;
 bool goodSettings =
   (voltageRef < pDev->maxVoltage.get()) 
  &&  (voltageRef > pDev->minVoltage.get());
 if (goodSettings) {
  pWorkingDevice->
   refVoltage.set(voltageRef,pContext);
 } else {
  pWorkingDevice->
   badVoltageRef.raise(pContext);

  // the equipment copes with the situation 
  // by maintaining current settings and
   // ignoring new ones, yet alarm is
   // registered and will stay-on until new 
  // valid settings are applied by upper layer
  // to whom exception is returned meanwhile.
  throw FesaIOException(«out of range»);
 }
}

AcquireVoltage::execute(RTEvent *pEv) {
 MultiplexingContext * pContext = 
  pEv->getMultiplexingContext();
 for (unsigned int i=0;i<deviceCollection.size();  
  i++){
  CapacitorDevice* pDev=deviceCollection[i];
  VBoard* pBoard= getVBoard(pDev->hw.get());
  fl oat voltage = pBoard->getVoltage();
  bool badVoltage = (fabs(voltage - pDev->
   refVoltage.get(pContext))>TOLERANCE);
  if (badVoltage) {
   pDev->regulationFail.raise(pContext);
  }
 }
}

A
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Example of context-dependant alarms

// One fault-fi eld named «overheat», associated
//  to a Temperature property for diagnostics.
AcquireTemperature::execute(RTEvent *pEv) {
 for (unsigned int i=0;i<deviceCollection.size();  
  i++){
  ThermometerDevice* pDev=deviceCollection[i];
  AcqBoard* board= getAcqBoard(pDev->hw.get());
  fl oat temperature=board.getSample();
  if (temperature>pDev->maxTemperature.get()) {
   pDev->overheat.raise(); // raise alarm
  } else {
   pDev->overheat.lower(); // no alarm
  }
  pDev->temperature.set(temperature);
}

Sample code which raises alarms

which is entirely controlled 
from your C++ code. Hence if 
you raise an alarm, it will stay-
on until you explicitly reset 
the fault-fi eld. Therefore you 

must make sure that for each 
‘raise’ statement, you have a 
‘lower’ counterpart, as illus-
trated by the example depicted. 
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