
Saftlib without DBus

Michael Reese

October 30, 2018

Outline

Saftlib with DBus
Saftlib without DBus
Implementation
No impact on user code
Useful (future) changes with modified API

DBus DBus
daemonprocess-1

process-2

process-3

DBus provides

I typed high-level IPC between two processes

I daemon allows communication between all connected
processes (function calls, signals, properties)

I low level C-API, rarely used directly

High-level APIs in various languages

I Gio: C-API, part of GTK+ support libraries

I Glibmm: C++ wrapper around Gio and Glib

DBus use in Saftlib DBus
daemonsaft-ctl tr0 snoop

PowerSupply
FESA class

saftd

hardware

Disadvantages using DBus

I Glibmm library dependency
I DBus daemon is additional process

I higher CPU load
I more difficult RT-scheduling (priorities?)

I DBus data transfer is relatively slow
I latency for signals (2 hops)
I execution time for remote function calls (4 hops)
I encoding/decoding large amounts of data

Saftlib without DBus
saft-ctl tr0 snoop

PowerSupply
FESA class

saftd

hardware

Advantages if saftd has DBus-daemon functionality

I only saftd process needed

I fewer hops for data transfer

I in the future: glibmm dependence can be dropped

Challenges / Disadvantages

I re-implement DBus functionality

I DBus tools (d-feet, busctl) cannot be used anymore

Reuse existing Gio::DBus API

Gio::DBus
API

subset used
by saftlib

"saftbus"
implementation

subset used
by saftlib

Approach

I Saftlib uses a subset of the complete Gio::DBus API

I rewrite an implementation of that part of the API and imitate
its functionality (saftbus)

I additional module inside Saftlib codebase

I Saftlib code is largely unchanged

Implementation details: sockets and pipes

saft-ctl tr0 snoop 0 0 0

saft-ctl tr0 snoop 0 0 0

saftd

SAFTd_Proxy

TiminReceiver_Proxy

TimingReceiver_Service

SAFTd_Service

signal
pipes

one per
Proxy object

function calls
and property get/set

00 01 02 30 31.......

sockets

System resources

I saftd runs one single thread

I function calls and properties
via sockets

I one socket per client process

I finite number of sockets (32)

I signals via pipes, one pipe
per Proxy object

Implementation details: saftlib codebase

Saftbus in the saftlib repository

I branch in git repository: git checkout saftbus-option

I located in subdirectory saftlib/saftbus

I integrated in autotools build system of saftlib
with its own saftlib/saftbus/Makefile.am

I saftbus is optional: ./configure --enable-saftbus

Saftlib changes outside saftlib/saftbus

I add #include <saftlib ipc.h>

I namesapce change Gio::DBUS:: → IPC METHOD::

IPC METHOD macro is set by ./configure script

I proxy code: Connection → ProxyConnection

saftbus has different classes for Service and Proxy objects

No impact on user code

Saftlib API remains unchanged

I no change in user code required (e.g. fesl)

I fast arrays via pipes (type="AAu") are still supported

I recompilation required

I link with -lsaftlib -lsaftbus

(pkg-config saftlib –libs)

Useful (future) changes with modified API

Breaking the API allows further simplifications

I int wait for signal(int timeout ms) blocking call
I based on poll system call
I simplify user code by replacing local Glib::MainLoop
I potentially faster because a subset of Proxys can be selected

I get rid of PropertyChanged signals
I they just eat up signal bandwidth
I need to change device APIs (XML and driver code) to not rely

on PropertyChanged signals
I use properties for properties and signals for notifications

I get rid of Glibmm dependence
I simplified deployment
I simplified use

	Saftlib with DBus
	Saftlib without DBus
	Implementation
	No impact on user code
	Useful (future) changes with modified API

