

# Characterization of WR Network for B2B Transfer

### Two type B2B messages





# Characterization of WR Network for B2B Transfer

### **Requirements:**

No misordered frame

B2B related events can not receipted and executed in time, which causes the failure of the B2B transfer.

> Transfer latency on network  $\leq$  400 µs

Hard upper bound time constraints 10 ms

➢ Tolerable frame loss rate

Re-transmission of the lost frame increases the transfer latency (> 1 ms), which causes the failure of the B2B transfer.



# Characterization of WR Network for B2B Transfer

#### **Requirements:**

- Tolerable frame loss rate one B2B transfer failure every month
  - 1<sup>st</sup> type 0.22×10<sup>-7</sup> 880  $0.22 \times 10^{-7}$  $5 \times 10^3 \times 60 \times 60 \times 24 \times 30 \times 3$ bandwidth maximal 3 parallel per month 5kbps **B2B** transfers 2<sup>nd</sup> type 0.43×10<sup>-8</sup> 880  $0.43 \times 10^{-1}$  $25 \times 10^3 \times 60 \times 60 \times 24 \times 30 \times 3$ bandwidth 25kbps



Test setup

GOETHE

UNIVERSITĂT

Simulate actual FAIR WR network traffic



Results of 45 days test for the B2B transfer [1]:

- Misordered frame  $\rightarrow$  Requirement met
- Transfer latency  $\rightarrow$  Requirement met
- Lost frame → Requirement not met

Firmware update of the WR switch is triggered by this result



**In case** all requirements are met:

- Up to 38 WR switch layers can be used between DM and source ring
- Up to 8 WR switch layers can be used between two rings

#### Fit FAIR WR network architecture

[1] C. Prados and J. Bai. Testing the WR Network of the FAIR General Machine Timing System, 2016.