

Issued: 11. Juni 2024

Printed: 11. Juni 2024

Key: F-MK-06

MK - schnelle Kicker in SIS und ESR

Gerätemodell und Softwareentwurf

P. Kainberger

Dieses Papier enthält die Beschreibung des Gerätemodells 'MK - schnelle Kicker in SIS u. ESR' und den Entwurf der Gerätesoftware für dieses Gerät.

Die schnellen Kicker in SIS u. ESR sind sehr schnelle magnetische Ablenksysteme, die den Strahl für eine sehr genau einstellbare Zeit um einen wohldefinierten Winkel von seiner Sollbahn ablenken. Sie werden zur schnellen Extraktion vom SIS in den ESR, für die Injektion in den ESR, für die Extraktion aus dem ESR und die Reinjektion vom ESR in das SIS benutzt. Zusätzlich ist in SIS und ESR jeweils ein Kickermagnet (um 45° gedreht) zur Q-Wertmessung vorgesehen.

Änderungsprotokoll							
Datum	GM-Version	Name	Kommentar				
09. May. 94	MK _ 06	P. Kainberger	Beginn der Erstellung				
12. Aug. 94	MK_06	P. Kainberger	Fertigstellung				
07. Feb. 97 MK_08 P. Kainl		P. Kainberger	Statuserweiterung (Therapieblockie-				
			rung)				
09. März 99	HFU_10	P. Kainberger	Aktualisierung, Hochstromtiming				
November 00	_	M. Kühn	Überarbeitete und erweiterte T_EX -Ver-				
sion, die sowohl in PostScript als							
in HTML konvertiert werden kann.							

Inhaltsverzeichnis

3.1 Funktionscodes der Interfacekarte 3.2 Kickerhardware 3.2.1 Spezielle Interfacekomponenten 3.3 Interlock Interrupt 3.4 Data Ready (DRD) Interrupts 3.5 Data Ready (DRD) Interrupts 3.6 Umfang eines logischen Gerätes 3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorladung überprüfen 4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.2 Genauigkeitsanforderungen 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts <th>Ι</th> <th>Da</th> <th>s Gerätemodell</th> <th>7</th>	Ι	Da	s Gerätemodell	7
3 Die Schnittstelle zum Gerät 3.1 Funktionscodes der Interfacekarte 3.2 Kickerhardware 3.2.1 Spezielle Interfacekomponenten 3.3 Interlock Interrupt 3.4 Data Request (DRQ) Interrupts 3.5 Data Ready (DRD) Interrupts 3.6 Umfang eines logischen Gerätes 3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorbänke laden 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.1.1 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrum	1	Die	Aufgabe des Gerätes	7
3.1 Funktionscodes der Interfacekarte 3.2 Kickerhardware 3.2.1 Spezielle Interfacekomponenten 3.3 Interlock Interrupt 3.4 Data Request (DRQ) Interrupts 3.5 Data Ready (DRD) Interrupts 3.6 Umfang eines logischen Gerätes 3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorbänke laden 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun	2	Die	Hardware des Gerätes	8
3.2 Kickerhardware 3.2.1 Spezielle Interfacekomponenten 3.3 Interlock Interrupt 3.4 Data Request (DRQ) Interrupts 3.5 Data Ready (DRD) Interrupts 3.6 Umfang eines logischen Gerätes 3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorbänke laden 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Inschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun	3	Die	Schnittstelle zum Gerät	10
3.2.1 Spezielle Interfacekomponenten 3.3 Interlock Interrupt 3.4 Data Request (DRQ) Interrupts 3.5 Data Ready (DRD) Interrupts 3.6 Umfang eines logischen Gerätes 3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Insschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		3.1	Funktionscodes der Interfacekarte	10
3.3 Interlock Interrupt 3.4 Data Request (DRQ) Interrupts 3.5 Data Ready (DRD) Interrupts 3.6 Umfang eines logischen Gerätes 3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorbänke laden 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		3.2	Kickerhardware	11
3.4 Data Request (DRQ) Interrupts 3.5 Data Ready (DRD) Interrupts 3.6 Umfang eines logischen Gerätes 3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorbanke laden 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.1.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun			3.2.1 Spezielle Interfacekomponenten	14
3.5 Data Ready (DRD) Interrupts 3.6 Umfang eines logischen Gerätes 3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätes		3.3	Interlock Interrupt	17
3.6 Umfang eines logischen Gerätes 3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Event-Sequenzfehler 4.8.3 Event-Overrun		3.4	Data Request (DRQ) Interrupts	18
3.7 Definition der Bits des Hardwarestatus 3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Event-Sequenzfehler 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler		3.5	Data Ready (DRD) Interrupts	18
3.8 Konfigurationsabfrage 4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		3.6	Umfang eines logischen Gerätes	18
4 Die Bedienung des Gerätes 4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		3.7	Definition der Bits des Hardwarestatus	19
4.1 Aufgaben im Normalbetrieb 4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		3.8	Konfigurationsabfrage	20
4.1.1 Kondensatorbänke laden 4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun	4	Die	Bedienung des Gerätes	20
4.1.2 Kondensatorladung überprüfen 4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		4.1	Aufgaben im Normalbetrieb	20
4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun			4.1.1 Kondensatorbänke laden	20
4.1.3 Hochspannungskabel laden 4.1.4 Spannung am HV-Kabel kontrollieren 4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun			4.1.2 Kondensatorladung überprüfen	21
4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten. 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun			4.1.3 Hochspannungskabel laden	21
4.1.5 Shuntstrom überprüfen 4.1.6 Delaytimer vorbereiten. 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun			4.1.4 Spannung am HV-Kabel kontrollieren	21
4.1.6 Delaytimer vorbereiten 4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun				21
4.1.7 Starten der Delaytimer 4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun			-	21
4.1.8 Zünden des Kickers 4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun			v	21
4.1.9 Auswertung der Diagnose 4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun			·	22
4.1.10 Einschalten 4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun				22
4.1.11 Ausschalten 4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun				22
4.2 Genauigkeitsanforderungen 4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun				22
4.3 Zeitkritische Anforderungen 4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		4.2		22
4.4 Einordnung in das Timing 4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		4.3		23
4.5 Festlegung von Startwerten 4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		4.4		23
4.5.1 Kaltstarts 4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		4.5		23
4.5.2 Warmstarts 4.6 Handbetrieb 4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		-		23
4.6 Handbetrieb				24
4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus 4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		4.6		$\frac{1}{24}$
4.8 Verhalten bei Störungen 4.8.1 Geräteinterlock 4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		-		24
4.8.1 Geräteinterlock				$\frac{24}{25}$
4.8.2 Event-Sequenzfehler 4.8.3 Event-Overrun		2.0		25
4.8.3 Event-Overrun				25
				$\frac{25}{25}$
1.0.1 11ubiuii uoi 110iiiiiuiiiuuii0ii 110 - Oliuu				$\frac{25}{25}$
		4.9		$\frac{25}{25}$

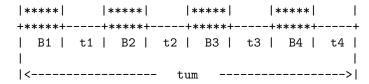
5	\mathbf{Die}		sentation des Gerätes	25
	5.1	Kennze	ichnung des Gerätemodells	26
	5.2	Die Ma	ster-Properties	26
		5.2.1	POWER	26
		5.2.2	STATUS	26
		5.2.3	INIT	26
		5.2.4	RESET	27
		5.2.5	VERSION	27
		5.2.6	INFOSTAT	27
		5.2.7	EXTSTAT	28
		5.2.8	CONSTANT	29
		5.2.9	INFO	30
			OILTEMP	30
	5.3		ave-Properties	30
	0.0	5.3.1	ACTIV	31
		5.3.2	EQMERROR	31
		5.3.2	COPYSET	$\frac{31}{32}$
		5.3.4	STATINFO	$\frac{32}{32}$
		5.3.5	DIAGNOSE	33
		5.3.6	VOLTRES	34
		5.3.7	VOLTRFI	34
		5.3.8	VOLTTGS	34
		5.3.9	VOLTTGI	35
			VOLTRIS	35
			VOLTRII	35
			TIMDELRF	35
		5.3.13	TIMDELTG	35
		5.3.14	TIMDELRI	36
		5.3.15	TIMFTRF	36
		5.3.16	TIMFTTG	36
		5.3.17	TIMFTRI	36
		5.3.18	ALLREFS	36
II	D	er En	swurf der Software	39
6	Soft	twareer	twurf	39
-	T -1-	1- D-4		20
7			enbasis der Konstanten	39
	7.1	rabene	der Konstanten	39
8	Du	alport l	RAM	40
o	Dua	aiporti	tAW	40
9	USI	Rs - Us	er Service Routinen	40
_	9.1		corische USRs	40
	0.1	9.1.1	N_Init	40
		9.1.1	N_Reset	40
		9.1.2 $9.1.3$	R_Status	40
		9.1.3 $9.1.4$	R_Power	40
		9.1.4 $9.1.5$		40
				40
		9.1.6		-
		9.1.7	W_Active	40
		9.1.8	W CopySet	40

	9.1.9	R_EQMErr
	9.1.10	R_Version
	9.1.11	R_InfoStat
9.2	Geräte	spezifische USRs
	9.2.1	R_Constant
	9.2.2	R_Info
	9.2.3	R_Oiltemp
	9.2.4	R_Diagnose
	9.2.5	R_VoltRFS
	9.2.6	W_VoltRFS
	9.2.7	R_VoltRFI
	9.2.8	R_VoltTGS
	9.2.9	W_VoltTGS
	00	R_VoltTGI
		R_VoltRIS
		W_VoltRIS
		R_VoltRII
		R_TimDelRFS
		W_TimDelRFS
		R_TimDelTGS
		W_TimDelTGS
		R_TimDelRIS
		W_TimDelRIS
		R_TimFTRFS
		W_TimFTRFS
		R_TimFtTGS
		W_TimFtRIS
		R_AllRefS
		W_AllRefS
0.0		R_StatInfoS
9.3		e Routinen
	9.3.1	Get_db_Constants
10 FO	Mc E	quipment Module 45
		e Zustände
10.1		Bedeutung der internen Zustände
		0 0
10.9		9 9
10.2		connektierte EQMs
		LoadCapacities_EQM
		LoadCable1_EQM
		LoadCable2_EQM
		CheckShot_EQM
10.0		Emerg_EQM
10.3		isch konnektierte EQMs
		CheckRemote_EQM
		CheckTemp_EQM
		CheckOilTemp_EQM
		CheckPower_EQM
	10.3.5	Update Config EQM

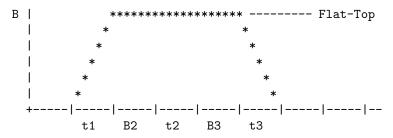
10.4	1	18
	10.4.1 Interlock_EQM	18
	10.4.2 DRD_EQM	18
	10.4.3 DRQ_EQM	18
10.5		18
		18
		18
		18
		18
	•	18
10.6		18
	·	18
		18
		19
10.7		19
		19
	· •	19
10.8	•	19
		19
		19
	•	19
		19
		19
		19
	ı v	50
		50
		50
		50
		50
		50
11 Var	ianten 5	0
		0
12.1	Fehlerbehandlung	60
Index	-	-
index	5	1
Abb	ildungsverzeichnis	
1		2
2	Ansteuerung der Thyratrons	13
3	Spezielle Interfacekomponenten	7
4	Standardzyklus mit relevanten Events für Kicker	23

Teil I

Das Gerätemodell


1 Die Aufgabe des Gerätes

Ziel der schnellen Ablenksysteme in SIS u. ESR ist, den umlaufenden Ionenstrahl maximal innerhalb eines Ringumlaufs abzulenken. Dabei sollen zwei Alternativen realisiert werden:


- 1. Ablenkung des gesamten Ringinhalts.
- 2. Ablenkung des halben Ringinhalts und ca. 30 ms später die Ablenkung des restlichen Ringinhalts.

Der gesamte Ringumfang (SIS) beträgt 216 m und die höchste erreichbare Geschwindigkeit der beschleunigten Ionen ist die Lichtgeschwindigkeit c; daraus ergibt sich eine kürzeste Umlaufzeit von ca. 640 ns. Im Ring befinden sich, nach Erreichen der Extraktionsenergie, vier Teilchenpakete (Bunche: B1...B4), deren Länge und Abstand als gleich und konstant angenommen werden kann.

Position der Bunche (im der Länge nach gestreckten Ring):

B-Feld des Kickermagneten (Rampenform bei Auslenkung von zwei Bunchen, also halber Ringumfang)

wobei gilt:

B1...B4 Bunche 1 bis 4

t1...t4 Bunch-Abstände (t1 = t2 = t3 = t4) tum Gesamtumlaufzeit (min. 640 ns, max. 2500 ns)

Aus der Realisierung der beiden Extraktionsalternativen ergeben sich folgende Anforderungen an das B-Feld des Kicker-Magneten:

- da die Feldänderung nur während der Bunchzwischenräume stattfinden darf, muß der gesamte Feldanstieg innerhalb einer Zeit t (t = tum / 8, minimal ca. 80 ns) erfolgen, ebenso die abfallende Flanke des Feldes (bei Auslenkung des halben Ringumfangs).
- die Flat-Top-Dauer muß abhängig von der gewählten Extraktionsalternative entweder 7 * t (Alternative 1) oder 3 * t (Alternative 2) sein (t = tum / 8, minimal ca. 80 ns). Abhängig von der Teilchenenergie muß die Flat-Top-Dauer insgesamt zwischen 320 und 2500 ns einstellbar sein.

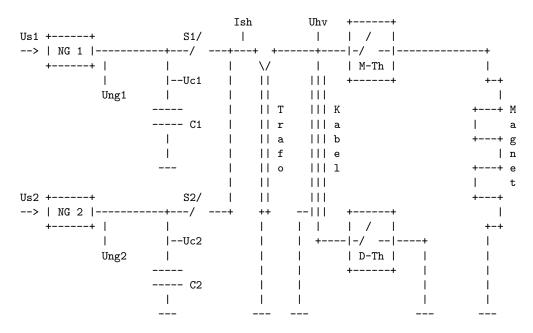
Zur Erzeugung eines B-Feldes der geforderten Größenordnung (Bmax: 350 Gauß) in der geforderten Zeit, ist eine sehr hohe Induktionsspannung (200 - 700 kV) notwendig. Wegen dieser Hochspannungsanforderung wird der Extraktionskicker in mehrere separate Module (1...9 Module) aufgeteilt, wodurch die Spannungsanforderungen für jedes einzelne Modul drastisch reduziert werden können (max. 80kV pro Modul). Wegen der Hochspannungsanforderungen muß in jeder Moduleinheit zur Kühlung und Isolation der Komponenten ein Ölkreislauf installiert werden, der überwacht werden muß.

2 Die Hardware des Gerätes

Alle (bis zu neun) Module eines Kickers sind identisch aufgebaut und funktionieren im Prinzip wie folgt:

Ein Netzgerät (NG 1, NG 2) lädt einen Kondensator (C1, C2) auf. Dieser Kondensator kann mittels eines Schalters (S1, S2) über einen Transformator (Trafo) teilweise entladen werden. Auf der Sekundärseite dieses Transformators wird dabei eine Hochspannung erzeugt, mit der ein Hochspannungskabel auf bis zu 80 kV aufgeladen werden kann.

Dieses aufgeladene Kickerkabel kann nun über ein als Hochspannungsschalter dienendes Thyratron (Main Thyratron, M-Th) auf den eigentlichen Kickermagneten gegeben werden. Da die Kabelspannung sehr hoch ist, fließt ein entsprechend hoher Strom durch den Magneten, wodurch das zum Ablenken des Strahles erforderliche Magnetfeld erzeugt wird.


Wegen der impulsartigen Entladung des Kabels ist der Strom dabei sehr konstant. Die (maximale) Dauer des Kickerpulses wird durch die Länge des Kabels (ca 300 m) bestimmt. Um auch kürzere Pulse erzeugen zu können, kann das Kabel am anderen Ende über ein weiteres als Hochspannungsschalter dienendes Thyratron (Dump Thyratron, D-Th) entladen werden. Werden beide mehr oder weniger gleichzeitig gezündet, laufen zwei Entladepulse, jeder von einem Ende aus, in das Kabel hinein. Der Kickerpuls ist dann beendet, wenn sich beide Pulse im Kabel treffen. Somit läßt sich über die Zeitbeziehung zwischen dem Schalten der beiden Thyratrons die Länge des Kickpulses einstellen.

Die Stärke des Kickerpulses ist durch die Spannung im Kabel gegeben. Diese Spannung wird bestimmt durch die Spannung am Kondensator (C1, C2), der dann über den Transformator das Kabel auflädt.

Da das Aufladen des Speicherkondensators recht lange dauert (ca 300 ms), sind Netzgeräte und Kondensatoren in jedem Modul doppelt vorhanden. Dadurch ist es möglich, kurz hintereinander zwei Kicks abzugeben.

Zusätzlich werden die Kicker zur Injektion (ESR) und Reinjektion (SIS) benutzt. Bei der Verwendung des Kickers im SIS zur Reinjektion kann es vorkommen, daß innerhalb eines SIS-Zyklus 3 Kicks (Reinjektion und Doppelschußextraktion) benötigt werden. In diesem Fall wird einer der Speicherkondensatoren (C1) während des Zyklus zweimal geladen (also zusammen mindestens 600 ms Gesamtladezeit).

Jedes Kickermodul ist schematisch etwa wie folgt aufgebaut:

Prinzipieller Aufbau eines Kickermoduls

Die Stärke des Kickpulses wird eingestellt über die Sollspannungen Us1 bzw. Us2 der beiden Netzgeräte.

Da die Wirkungsweise recht komplex ist, können an verschiedenen Stellen zur Überprüfung Ist-Spannungen gemessen werden. Es sind dies:

- Die Istspannung Ung1 bzw. Ung2 der beiden Netzgeräte.
- Die Spannungen Uc1 bzw. Uc2 an den beiden Kondensatoren.
- Die Spannung Uhv, auf die das Kabel aufgeladen ist.
- Der Strom Ish, der durch die Primärseite des Trafos fließt. Dieser Strom wird als Spannungsabfall über einen Serienwiderstand (Shunt) gemessen und daher als Shuntstrom bezeichnet.

Folgende Überprüfungen sind vorzusehen:

- Entspricht die Ist-Spannung der Netzgeräte der eingestellten Soll-Spannung (Ung1=Us1, Ung2=Us2)?
- Sind die Kondensatoren *vor* dem Ladevorgang des Kabels auf die korrekte Sollspannung aufgeladen (Uc1=Us1, Uc2=Us2)?
- Sind die Kondensatoren *nach* dem Ladevorgang des Kabels korrekt entladen? Da nur ein Teil der Ladung auf das Kabel transferiert wurde, muß sich die Kondensatorspannung erniedrigt haben (Uc1=c Us1, Uc2=c Us2; wobei c etwa 0.5 ist ??? genaue Werte werden von den Gerätebetreuern noch geliefert ???).
- Fließt nachdem der Ladevorgang des Kabels abgeschlossen ist kein Strom mehr durch den Trafo (Ish=0). Wenn nicht, hat der Ladeschalter S1 bzw. S2 nicht sauber abgeschaltet.

3 Die Schnittstelle zum Gerät

3.1 Funktionscodes der Interfacekarte

Die für die Geräteansteuerung definierten Funktionscodes sind in der folgenden Tabelle aufgelistet. Als Modus ist angegeben, ob Daten von der Interfacekarte gelesen werden, ob Daten zu der Interfacekarte geschrieben werden, oder ob nur eine Funktion ausgeführt wird. Dabei ist zu berücksichtigen, daß bei den Kickeranlagen zwei verschiedene Interfacekartentypen (Standardinterfacekarte und multifunktionale Interfacekarte mit Adreß- und datenbus) verwendet werden. Die Codes und ihre Bedeutung sind in der folgenden Tabelle zusammengefaßt.

Funktionscode		Modus	Bedeutung
Name	Hex		
ifb_reset	01	Funktion	Reset
ifb_power_on	02	Funktion	Netz einschalten
ifb_power_off	03	Funktion	Netz ausschalten
ifb_soll_1	06	Schreiben	Spannungssollwert (Netzgerät) setzen
ifb_data_bus_w	10	Schreiben	16 Bit auf Datenbus schreiben
ifb_addr_bus_w	11	Schreiben	8 Bit auf Adressbus schreiben
ifb_intr_mask	12	Schreiben	Interruptmaske setzen
ifb_ist_1	81	Lesen	Spannungsistwert (Netzgerät) lesen
ifb_data_bus_r	90	Lesen	16 Bit von Datenbus lesen
ifb_rdstat	C0	Lesen	Statusbyte lesen
ifb_rdstat_int	С9	Lesen	Status der Interfacekarte lesen

ifb_reset

Das Gerät wird in einen definierten Ausgangszustand gebracht.

ifb_power_on, ifb_power_off

Einschalten bzw. Ausschalten eines Kondensatorladegerätes. Der Funktionscode muß mindestens 200 ms lang gehalten werden (macht die Interfacekarte des Netzgerätes selbst).

ifb_soll_1

Setzen der Sollspannung an den Kondensatorladegeräten.

ifb_data_bus_w

Schreiben eines 16-Bit Wertes auf den Datenbus über eine multifunktionale Interfacekarte mit Adreß- und Datenbus.

ifb_addr_bus_w

Schreiben eines 8-Bit Wertes (Lowbyte des Datenwortes) auf den Adreßbus über eine multifunktionale Interfacekarte mit Adreß- und Datenbus.

ifb_intr_mask

Interruptmaske der Interfacekarte setzen.

ifb_ist_1

Istspannung der Kondensatorladegeräte lesen.

ifb_data_bus_r

Lesen des 16-Bit Datenwortes vom Datenbus über eine multifunktionale Interfacekarte mit Adreß- und Datenbus.

ifb_rdstat

8-Bit Gerätestatus lesen (zur Einordnung des gelesenen Status siehe Abschnitt 3.7 auf Seite 19).

ifb_rdstat_int

Internen Status der Interfacekarte lesen (z.B. Interruptmasken).

3.2 Kickerhardware

Folgende Blockdiagramme verdeutlichen die Einzelkomponenten eines Kickermoduls und zeigen die Signale und phys./techn. Größen, die zur Steuerung und Überwachung des Kickers vom Kontrollsystem erfaßt und verarbeitet werden müssen.

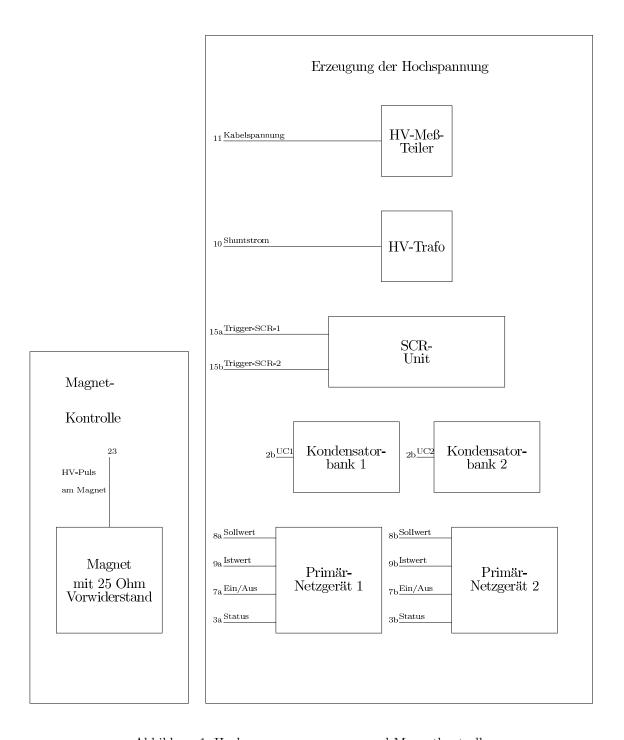


Abbildung 1: Hochspannungserzeugung und Magnetkontrolle

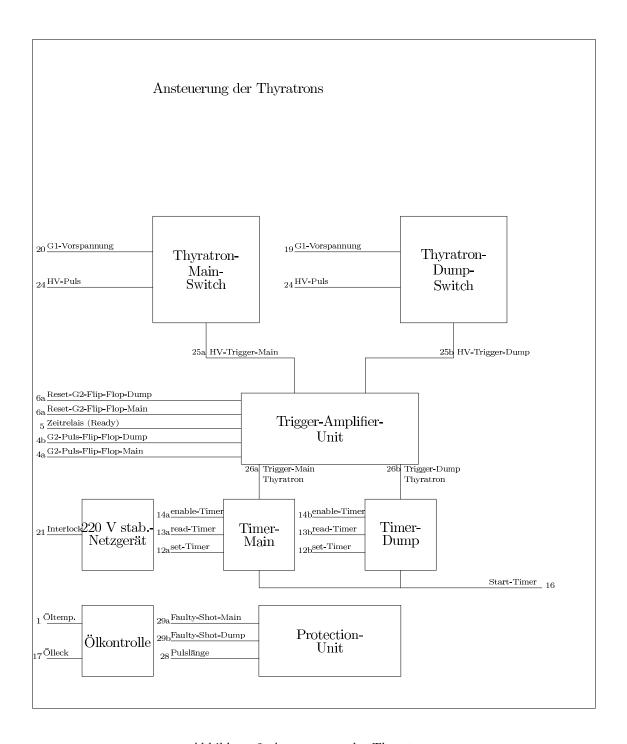


Abbildung 2: Ansteuerung der Thyratrons

Folgende Tabelle zeigt die Zuordnung der Signale und Meßgrößen zu Interfacekomponenten:

Signal-	Physikalisch/technische Größe	Signaltyp	In/Out	Quelle oder Ziel
Nr.			·	(je nach Richtung)
1	Öltemperatur (3 Meßstellen)	analog (3 St.)	\rightarrow	Multiplexer-ADC
2 a,b	Kondensatorbank a,b (Spannung-Ist)	analog	\rightarrow	Multiplexer-ADC
3 a,b	Primär Netz-Geräte a,b Status	digital	\rightarrow	Standard-IFK 1,2
4 a,b	Gitter-2-Puls-Flip-Flop (Main, Dump)	digital	\rightarrow	Parallel I/O-Baustein
5	Zeitrelais (15 Minuten)	Status	\rightarrow	Hardstatus-Leitung
6 a,b	Reset-Gitter-2-Flip-Flop (Main,Dump)	digital	\rightarrow	Parallel I/O-Baustein
7 a,b	Primär Netz-Geräte a,b EIN/AUS	digital	\longleftrightarrow	Standard-IFK 1,2
8 a,b	Primär Netz-Geräte a,b Spannung-Soll	analog	←	Standard-IFK 1,2
9 a,b	Primär Netz-Geräte a,b Spannung-Ist	analog	\rightarrow	Standard-IFK 1,2
10	Shunt-Strom (Primärwindung HV-Trafo)	analog	\rightarrow	Multiplexer-ADC
11	Kabelladespannung (HV-Meßteiler)	analog	\rightarrow	Multiplexer-ADC
12 a,b	Delay-Timer a,b setzen	digital	←	Delay-Timer
13 a,b	Delay-Timer a,b lesen	digital	\rightarrow	Delay-Timer
14 a,b	Delay-Timer a,b enable	digital	\leftarrow	Delay-Timer
15 a,b	Trigger-Input SCR a,b	Trigger	←	Parallel I/O
16	Start-Signal Delay-Timer	analog Puls	\rightarrow	Delay-Timer
17	Ölleck	Interlock	\rightarrow	Interlock-Einheit
19	Gitter 1 Vorsstrom (Thyratron Dump)	Interlock	\rightarrow	Interlock-Einheit
20	Gitter 1 Vorsstrom (Thyratron Main)	Interlock	\rightarrow	Interlock-Einheit
21	Stabilisiertes Netz-Gerät ausgefallen	Interlock	\rightarrow	Interlock-Einheit
23	Magnetpuls	analog Puls	\rightarrow	BNC-Verteiler Oszi
24	Thyratron HV-Puls	analog Puls	\rightarrow	BNC-Verteiler Oszi
25 a,b	Trigger-Amplifier-Unit Output	analog Puls	\rightarrow	BNC-Verteiler Oszi
26 a,b	Timer Signal Output	analog Puls	\rightarrow	BNC-Verteiler Oszi
28	Pulslängen-Zaehler a,b	digital	\rightarrow	MULTI-IFK
29 a,b	Faulty-Shot-Anzeige	digital	\rightarrow	Parallel I/O

Bemerkungen:

- Die Richtung gibt an, ob das Signal vom Gerät zur Interface-Karte (\rightarrow) oder von der Interface-Karte zum Gerät (\leftarrow) geht.
- Die Signal-Nummern entsprechen denen im jeweiligen Block-Diagramm.

Aus dieser Zuordnungstabelle wird ersichtlich, daß nur die Steuerung der Primär-Netzgeräte (Kondensatorladegeräte) durch die Standard-Interface-Karte (mit ADC, DAC, Power EIN/AUS, Status und Interlock) abgedeckt werden kann. Für alle anderen Signale ist spezielle Hardware erforderlich.

3.2.1 Spezielle Interfacekomponenten

- Multifunktionale Interface-Karte mit 8-bit Adreßbus und 16-bit Datenbus.
- 16-Kanal Multiplexer/ADC-Karte. Die 16 Kanäle sind wie folgt mit Analog-Signalen belegt:

Adr. am Adreßbus	Kanal	Belegung
$A0_{Hex}$	1	Öltemperatur Meßstelle 1
$A1_{Hex}$	2	Öltemperatur Meßstelle 2
$A2_{Hex}$	3	Öltemperatur Meßstelle 3
$A5_{Hex}$	4	frei
:	:	
$A7_{Hex}$	8	frei
$A8_{Hex}$	9	Spannung am Hochspannungskabel
$A9_{Hex}$	10	Ladestrom am Shunt
AA_{Hex}	11	Spannung an Kondensatorbank 1
AB_{Hex}	12	Spannung an Kondensatorbank 2

• 12-bit 100 MHz Delay-Timer zur zeitlichen Synchronisierung der Thyratrons und zur Synchronisation mit dem Beschleunigungsprozeß. Die beiden Timer (Start und Stop) belegen am Adreßbus folgende Adressen:

Adr. am Adreßbus	Bedeutung
05_{Hex}	Write Stoptimer (12-Bit Sollwert)
06_{Hex}	Write Starttimer (12-Bit Sollwert)
07_{Hex}	enable Timer
08_{Hex}	disable Timer
80_{Hex}	Read Stoptimer
81_{Hex}	Read Starttimer

• 40-Kanal Input/Output-Karte, aufgeteilt in 5 Parallel I/O-Ports (wovon bei den Kickeranlagen nur 2 benutzt werden) mit jeweils 8 Bit Input oder Output und folgender Belegung:

Adresse	Mode	Bit	Belegung
Adreßbus			
$F0_{Hex}$	Read	0	Gitter-2 Flip-Flop Main
		1	Gitter-2 Flip-Flop Dump
		2	Faulty Shot Main Thyratron
		3	Faulty Shot Dump Thyratron
		4	frei
		5	frei
		6	frei
		7	Status des Zeitrelais für Röhren-
			heizung
$F1_{Hex}$	Write	0	Reset Gitter-2 Flip-Flops
		1	Reset Faulty Shot
		2	frei
		3	enable start generator (Freigabe
			für externen Trigger)
		4	Trigger SCR Unit 1
		5	Trigger SCR Unit 2
		6	Trigger HV Amplifier
		7	frei

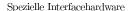
• 8-Kanal Interlock-Karte zur Geräteüberwachung (Adr. 03_{Hex} am Adreßbus) mit folgender Belegung bei Verwendung in einem Kontrolleinschub:

Bit	Belegung
0	Status stabilisiertes Netzgerät (1: ok, 0: Fehler)
	Gitter-1 Vorsstrom (Main)
2	Gitter-1 Vorsstrom (Dump)
3	24 V Interlockkreis
47	frei

Bei Verwendung im Timingeinschub gilt folgende Belegung:

??? Einbindung in 24-V-Interlock noch unklar ???

Bit	Belegung
0	Widerstände am Haupttank (Module 1 bis 5) hochgefahren
1	Widerstände am zweiten Tank (Module 6 bis 9) hochgefahren
2	Ölkreislauf (Ölleck)
34	frei
5	Vakuum-Interlock am Haupttank
6	Vakuum-Interlock am zweiten Tank
7	Kicker ist blockiert wegen Therapie


Die 8 Eingänge der Interlock-Karte sind direkt mit den 8 Hardstatus-Leitungen der Interface-Karte verbunden. So kann im Falle eines Interlocks über den Hardstatus der Interface-Karte der Verursacher des Interlocks ermittelt werden. Weiterhin gibt es einen Ein- und einen Ausgang für den 24-Volt-Interlockkreis, der nur dann geschlossen wird, wenn alle 8 Eingänge kurzgeschlossen sind. D.h. auch ein Fehler am stabilisierten Netzgerät unterbricht den 24-Volt-Interlockkreis, schaltet damit automatisch die Kondensatorladegeräte ab und entlädt die Kondensatorbänke über einen Widerstand.

- Pulslängen-Messung zur Überprüfung der eingestellten Pulslänge und zur Kurzschluß-Überwachung (Adr. 14_{Hex} am Adreßbus).
 - Mit der steigenden Flanke des Kickerpulses wird ein 16-MHz-Zähler gestartet und mit der fallenden Flanke des Signals gestoppt. Aus dem Zählergebnis läßt sich die Pulslänge bis auf 62.5ns genau bestimmen.
- Faulty-Shot-Überwachung (zur Erfassung von Fehlfunktionen der Thyratrons, wenn diese z.B. ohne Ansteuerung zünden).

Hierbei wird mit dem Triggerpuls zum Zünden der Thyratrons ein FliFlop gesetzt und mit dem Hochspannungspuls der Röhre ein weiteres??? oder so das gesetzte FliFlop wieder zurückgesetzt??? oder wie eigentlich genau???

Funktionsbeschreibung:

Eine multifunktionale Interface-Karte kommuniziert über einen 8-bit Adreßbus und einen 16-bit Datenbus mit den einzelnen Hardware-Komponenten. Jede Komponente hat eine feste, eindeutige Adresse für jede ihrer Funktionen (z.B.: Adresse $F0_{Hex} \rightarrow$ select Input/Output-Karte Port 1). Legt man also am Adreßbus das Datenwort $F0_{Hex}$ an, so wird beim nächsten Lesen vom Datenbus der Port 1 der Input/Output-Karte ausgelesen.

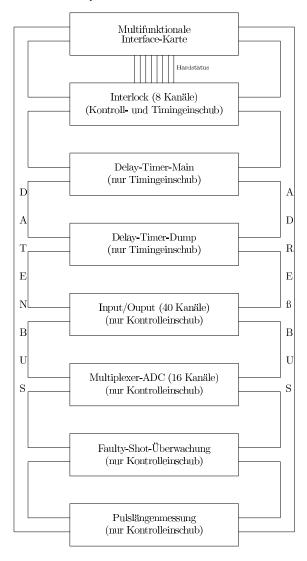


Abbildung 3: Spezielle Interfacekomponenten

3.3 Interlock Interrupt

Alle Kickerkomponenten eines Moduls (Trigger-Amplifier, SCR-Unit, Kondensatorladegeräte 1 u. 2, Interlockkarte) sind in einem 24-Volt-Interlockkreis eingebunden. Fällt eine der Komponenten aus, so wird der Interlockkreis unterbrochen und alle Einzelkomponenten gehen automatisch in einen sicheren Zustand. D.h. die Kondensatorladegeräte schalten aus und die Kondensatorbänke werden über einen Widerstand nach Masse entladen. Das Hochspannungskabel entlädt sich automatisch innerhalb von 1 bis 2 Sekunden über den Meßteiler und muß diesbezüglich nicht besonders berücksichtigt werden.

Über die Interlockkarte des Kontrolleinschubs sind für jedes Modul zusätzlich noch einige Interlocksignale verdrahtet (siehe Abschnitt 3.2.1 auf Seite 16).

Für die gesamte Kickeranlage (also modulübergreifend) werden über die Interlockkarte des Timingeinschubs einige zentrale Interlockmeldungen (Vakuum, Ölleck (Ölkreislaufüberwachung), Wi-

derstände am Tank im Ring hochgefahren) eingespeist.

??? Wie ist eigentlich die Interlockkarte im Timingeinschub in den Interlockkreis eingebunden (24 V, aber welcher ?) ???

3.4 Data Request (DRQ) Interrupts

Ein DRQ-Interrupt wird von den Kickerkomponenten nicht generiert.

3.5 Data Ready (DRD) Interrupts

Die Interfacekarte des Timingeinschubs erzeugt einen DRD-Interrupt, wenn das externe Triggersignal für den Kicker gekommen ist. Damit kann softwaremäßig überprüft werden, ob der externe Trigger (meist vom Timinggenerator) zum richtigen Zeitpunkt gekommen ist.

3.6 Umfang eines logischen Gerätes

Logisch werden alle Kickerkomponenten auf ein Gerät (und damit eine Nomenklatur) abgebildet. Physikalisch verbergen sich dahinter pro Modul genau 3 Interfacekarten:

- 1. Kontroll- und Steuereinschub (Interfacekarte mit Adreß- und Datenbus)
- 2. Netzgerät 1 zum Laden der Kondensatorbank 1 (Standardinterfacekarte)
- 3. Netzgerät 2 zum Laden der Kondensatorbank 2 (Standardinterfacekarte)

Die Interfacekarten der Kontrolleinschübe haben physikalisch eine Adresse von 1 bis 16 und stellen gleichzeitig die Modulnummer dar. Damit klar ist, welche Netzgeräte zu welchem Kontrolleinschub (und damit zu welchem Modul) gehören, müssen die physikalischen Adressen der Interfacekarten der Netzgeräte einen festen Bezug zur Adresse des Kontrolleinschubs haben. Beim Kicker wurde deshalb vereinbart, daß die Netzgeräte 1 zum Kontrolleinschub einen festen Adreßabstand von 16 und die Netzgeräte 2 einen Abstand von 32 haben müssen.

Zusätzlich gibt es pro Kickeranlage einen Timingeinschub (Interfacekarte mit Adreß- und Datenbus) mit den 100 MHz Delay-Timern zur präzisen Triggerung der beiden Thyratrons (Main und Dump) und einer Interlockkarte mit globalen (modulübergreifenden Interlockmeldungen). Für diesen Einschub wurden die Adressen 253 (für Q-Kicker) und 254 (für alle anderen Kicker) vereinbart. Zur Verdeutlichung sind in der folgenden Tabelle alle Interfacekartenadressen des SIS-Extraktionskickers aufgelistet:

	Adı	adezimal)						
Modulnummer	Kontrolleinschub			zgerät 1	it 1 Netzgerät 2			
1	1	1_{Hex}	17	11_{Hex}	33	21_{Hex}		
2	2	2_{Hex}	18	12_{Hex}	34	22_{Hex}		
3	3	3_{Hex}	19	13_{Hex}	35	23_{Hex}		
4	4	4_{Hex}	20	14_{Hex}	36	24_{Hex}		
5	5	5_{Hex}	21	15_{Hex}	37	25_{Hex}		
6	6	6_{Hex}	22	16_{Hex}	38	26_{Hex}		
7	7	7_{Hex}	23	17_{Hex}	39	27_{Hex}		
8	8	8_{Hex}	24	18_{Hex}	40	28_{Hex}		
9	9	9_{Hex}	25	19_{Hex}	41	29_{Hex}		
	Timingeinschub							
_	254 FE $_{Hex}$							

3.7 Definition der Bits des Hardwarestatus

Die Kickerkomponenten liefern insgesamt maximal 28 Bytes Statusinformation (3 Byte pro Modul plus 1 Byte vom Timingeinschub, also 1 Byte Status pro Interfacekarte). Alle 28 Byte werden mit dem Funktionscode ifb_rdstat ($C0_{Hex}$) von der jeweiligen Interfacekarte gelesen und nach folgender Abbildungsvorschrift auf insgesamt 3 Byte Kickergesamtstatus abgebildet.

Statusbits des Gesamtstatus	Abbildung aus den Status der Einzelkom-
	ponenten
8 15	UND-Verknüpfung der Status aller Kon-
	trolleinschub Interfacekarten
	plus Einzelbewertung einzelner Bits (Vakuum, Ölleck u. Widerstände)
	des Status der Interfacekarte des Timingeinschubs
16 23	UND-Verknüpfung der Status aller Netzgerät 1 Interfacekarten
24 31	UND-Verknüpfung der Status aller Netzgerät 2 Interfacekarten

Die Bits 0 . . . 7 sind die systemweiten sogenannten generierten Softwarestatusbits (in engl. derived status bits).

Die Statusbits im Einzelnen sind in der folgenden Tabelle zusammengefaßt.

Bit	Name	Bedeutu	ing
		High (1)	Low (0)
0	Power	on	off
1	Remote/Local	Remote	Local
2	rese	erved	
3	rese	erved	
4	rese	erved	_
5	Interlock	no	yes
6	HW Error	no	yes
7	SW Error	no	yes
8	stabilisiertes Netzgerät	ok	nicht ok
9	Main thyratron Vorsstrom	ok	nicht ok
10	Dump thyratron Vorsstrom	ok	nicht ok
11	24 V Interlockkreis	geschlossen	unterbrochen
12	Ölkreislauf	ok	Leck
13	Vakuum	ok	Interlock
14	Widerstände am Tank	nicht hochgefahren	hochgefahren
15	Modul ausgefallen	nicht ausgefallen	ausgefallen
16	Power	on	off
17	frei	immer high	_
18	frei	immer high	_
19	frei	immer high	_
20	Übertemperatur	ok	nicht ok
21	frei	immer high	_

22	Kicker blockiert wegen Therapie	ok	blockiert
23	Remote/Local	Remote	Local
24	Power	on	off
25	frei	immer high	_
26	frei	immer high	_
27	frei	immer high	_
28	Übertemperatur	ok	nicht ok
29	frei	immer high	_
30	Kicker blockiert wegen Therapie	ok	blockiert
31	Remote/Local	Remote	Local

3.8 Konfigurationsabfrage

Ein logisches Gerät ist ansprechbar und damit im Kontrollsystem vorhanden, wenn von allen Interfacekarten mindestens eines Moduls (Kontrolleinschub und beide Kondensatorladegeräte) und der Interfacekarte des Timingeinschubs mit dem Funktionscode $C0_{hex}$ (ifb_rdstat) ein Status gelesen werden kann.

Ändert sich die Konfiguration im Laufe des Betriebs (z.B. Netzgerät 1 am Modul 3 fällt mit Übertemperatur aus), so muß von der Gerätesoftware das Bit 15 (*Modul ausgefallen*) im Kickerstatus (siehe Statusdefinition auf Seite 19) auf 0 gesetzt werden und die Kickeranlage darf ohne explizites Initialisieren (*INIT* der SE) durch einen Geräteverantwortlichen nicht weiter betrieben werden.

4 Die Bedienung des Gerätes

4.1 Aufgaben im Normalbetrieb

Grundsätzlich müssen beim Betrieb einer Kickeranlage für jeden Kick folgende Aktionen durchgeführt werden:

- 1. Kondensatorbänke laden
- 2. Kondensatorladung überprüfen
- 3. Hochspannungskabel laden
- 4. Spannung am HV-Kabel kontrollieren
- 5. Shuntstrom überprüfen
- 6. Delaytimer vorbereiten
- 7. Starten der Delaytimer
- 8. Zünden des Kickers
- 9. Auswertung der Diagnose

4.1.1 Kondensatorbänke laden

Den Kondensatorladegeräten (Netzgeräte 1 u. 2) wird mit Funktionscode *ifb_soll_1* ein Spannungssollwert geschickt. Die Netzgeräte laden dann die Kondesatorbänke bis zum entsprechenden Wert auf. Dieser Vorgang kann bis zu 300 ms Zeit in Anspruch nehmen.

4.1.2 Kondensatorladung überprüfen

Die Kondensatorladegeräte (Netzgeräte 1 u. 2) zeigen in ihrem Status (Bit 6) an, ob der Sollwert erreicht ist. Da diese Information nicht statisch sondern dynamisch ist, findet sie keine direkte Abbildung im Gesamtstatus der Kickeranlage, kann aber zur Überprüfung im Steuerprogramm (EQM) verwendet werden. Zeigt das Ladegerät, daß der Sollwert nicht erreicht wurde, so ist ein entsprechender Fehler zu melden. Ebenso kann analog über den ADC der Interfacekarte der aktuelle Istwert am Ladegerät gelesen und überprüft werden. Ist die Abweichung zwischen Sollund Istwert zu groß (+/-???%, so ist ein entsprechender Fehler zu melden.

Die Spannung an den Kondensatorbänken der einzelnen Module kann über einen Kanal der MUX-ADC-Karte des jeweiligen Kontrolleinschubs gelesen und überprüft werden. Ist die Abweichung zwischen Soll- und Istwert zu groß (+/-???%), so ist ein entsprechender Fehler zu melden.

Am Ende aller Überprüfungen muß an den Kondensatorladegeräten Sollwert 0 eingestellt werden, damit die Kondensatoren nach dem Laden des HV-Kabels nicht gleich auf den letzten Sollwert aufgeladen werden.

4.1.3 Hochspannungskabel laden

An einem Ausgang der I/O-Karte wird für die SCR-Unit und den Trigger-Amplifier ein Schaltpuls erzeugt, wodurch die SCR-Unit die Kondensatorladung auf das Hochspannungskabel schaltet (Ladezeit ca 7 ms). Im Trigger-Amplifier wird durch diesen Puls intern ein Kondensator geladen, der zur Erzeugung des HV-Ausgangspulses zum späteren Zünden der Thyratrons benötigt wird. Zusätzlich muß die Pulslängenmesseinrichtung für den nächsten Kick vorbereitet werden (letzte Messung löschen, enable der nächsten Messung).

4.1.4 Spannung am HV-Kabel kontrollieren

Die Spannung am HV-Kabel wird über einen HV-Meßteiler einem Kanal der MUX-ADC-Karte des Kontrolleinschubs zugeführt und muß ca 7 ms nach Beginn des Ladevorgangs kontrolliert werden. Ist die Abweichung zwischen Soll- und Istwert zu groß (+/-???%), so ist ein entsprechender Fehler zu melden.

Ebenso ist zu kontrollieren, ob die Kondesatorladung entsprechend abgenommen hat (ca 50%).

4.1.5 Shuntstrom überprüfen

Über einen Kanal der MUX-ADC-Karte kann der Strom der über einen Serienwiderstand (Shunt) an der Primärseite des Trafos fließt gemessen und überprüft werden (darf nicht größer als 1 A sein).

4.1.6 Delaytimer vorbereiten

Wenn alle vorangegangenen Überprüfungen keinen Fehler geliefert haben, müssen die Delaytimer (Main und Dump) mit Sollwerten versorgt und enabled werden. Ebenso muß über einen Ausgang der I/O-Karte der Startgenerator enabled werden. Danach ist die Kickeranlage *scharf* und zündet mit dem nächsten Triggerpuls.

4.1.7 Starten der Delaytimer

Das Starten der Delaytimer zur Triggerung der SIS-/ESR-Kicker und Q-Kicker erfolgt über die Strahldiagnose-*Timinggeneratoren* (TG) des SIS bzw. ESR.

Der Timinggenerator gewährleistet eine HF- bzw. bunchsynchrone Erzeugung des Kicktriggers (schnelles Timing) und bietet zusätzlich die Möglichkeit energie- (also umlauffrequenz-) abhängige Verzögerungen zu realisieren. Die Aktivierung diesen schnellen Timings geschieht über die entsprechenden Kickerevents EVT_Kick_Start_1 (49) und EVT_Kick_Start_2 (69). Die TGs erzeugen ein

HF- bzw. bunchsynchrones Triggersignal für die Kicker, welches über eine spezielle Pulsanpaßkarte den Delaytimern der Kicker als Startsignal zugeführt wird.

Folgende Triggerungen sind bislang realisiert (in Klammern ist jeweils angegeben, welcher Timinggenerator (SIS oder ESR) die Triggerung der Kicker übernimmt):

- a) schnelle Extraktion SIS (SIS-TG)
- b) schnelle Injektion ESR (SIS-TG)
- c) schnelle Extraktion ESR (ESR-TG)
- d) Reinjektion ESR / SIS (ESR-TG)

Sowohl die Verzögerungszeiten der Delaytimer für SIS- und ESR-Kicker, die den Startzeitpunkt der Thyratronzündungen definieren, als auch die erforderlichen Zusatzverzögerungen (z.B. Berücksichtigung der Ionen-Laufzeiten zwischen SIS und ESR bei (b) und (d)) werden von den Operatingprogrammen des SIS bzw. des ESR berechnet.

Für den Fall des bunch-to-bucket-Transfers ((b) und (d)) wird über eine Zusatzhardware eine Variantion der Kickstart-Zeitpunkte in der Weise durchgeführt, daß die SIS/ESR-Injektions/Extraktions-Vorgänge zur passenden Phasenbeziehung zwischen den SIS/ESR-Beschleunigungskavitäten geschieht (Phasen-Synchronisierung).

4.1.8 Zünden des Kickers

Mit dem Ablaufen der Delaytimer (100 MHz Delay-Timer, die vom eingestellten Sollwert bis 0 dekrementieren) werden die eigentlichen Triggerpulse für Main- und Dumpthyratron erzeugt.

4.1.9 Auswertung der Diagnose

Das Starten der Delaytimer wird durch einen DRD-Interrupt angezeigt. Nach Empfang dieses Interrupts muß die Auswertung der Diagnoseeinrichtungen erfolgen (Faulty-Shot Überwachung, Pulslängenmessung).

4.1.10 Einschalten

Beim Einschalten des Gerätes (also einer ganzen Kickeranlage mit maximal 9 Modulen) müssen alle Kondensatorladegeräte (maximal 18) nacheinander eingeschaltet werden. Wobei zu beachten ist, daß zwischen dem Schalten von 2 Geräten eine Pause von ca 500 ms einzuhalten ist, damit durch das Schalten der Geräte keine allzugroße Netzbelastung erzeugt wird.

4.1.11 Ausschalten

Equivalent zum Einschalten.

4.2 Genauigkeitsanforderungen

Bei den Kickeranlagen werden modulweise folgende Meßgrößen (Istwerte) mit der angegebenen Genauigkeit erfaßt und auf die angegebene maximale Abweichung vom Sollwert überprüft:

Meßgröße	Meßgenauigkeit	max. Abweichung
		oder max. Wert
Istspannung Kondensatorladegerät	12 Bit ADC	??? %
Istspannung Kondensatorbank	12 Bit ADC	??? %

Istspannung Hochspannungskabel	12 Bit ADC	??? %
Iststrom am Shunt	12 Bit ADC	1 A
Pulslänge	16 MHz Zähler	??? %

Überschreitet eine der Größen die maximal erlaubte Abweichung, so muß von der Gerätesoftware eine entsprechende Fehlermeldung mit Angabe der Modulnummer erzeugt werden.

4.3 Zeitkritische Anforderungen

Das Magnetfeld am Kickermagnet muß genau zwischen zwei Bunchen (minimal 80 ns) hochgefahren und ebenso genau wieder auf 0 gebracht werden.

4.4 Einordnung in das Timing

Ein Beispiel eines SIS Standardzyklus mit relevanten Events für die Kickeranlagen ist in Abbildung 4.4 angegeben.

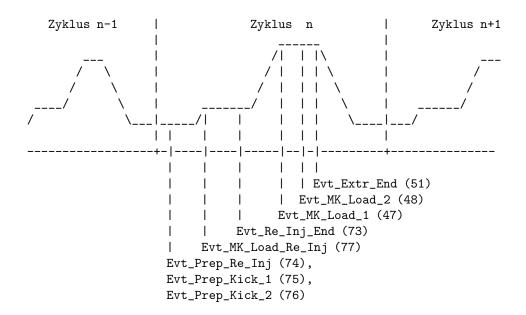


Abbildung 4: Standardzyklus mit relevanten Events für Kicker

Die Konnektierungen sind in der folgenden Tabelle zusammengefaßt.

4.5 Festlegung von Startwerten

4.5.1 Kaltstarts

Bei einem Kaltstart werden folgende Aktionen durchgeführt:

• Die aktuelle Modulkonfiguration wird als gültig gespeichert.

Aktion	Event	Dauer
Laden der Kondensatorbänke	<pre>Evt_Prep_Re_Inj,</pre>	$300~\mathrm{ms}$
	Evt_Prep_Kick_1,	
	Evt_Prep_Kick_2	
HV-Kabel laden, Vorbereitung des Kicks	<pre>Evt_MK_Load_Re_Inj,</pre>	$20~\mathrm{ms}$
	<pre>Evt_MK_Load_1,</pre>	
	Evt_MK_Load_2	
Diagnose des letzten Kicks	Evt_Re_Inj_End,	$10~\mathrm{ms}$
	Evt_Extr_End	

Tabelle 4: Standard-Eventkonnektierungen für Kicker

- Es wird ein Gerätereset auf alle Einzelkomponenten durchgeführt.
- Die Interlockbehandlung wird aktiviert.
- Der aktuelle Gerätestatus wird ermittelt.
- Alle Sollwerte werden für alle virtuellen Beschleuniger auf 0 gesetzt.
- Das Gerät wird für alle virtuellen Beschleuniger inaktiv gesetzt.
- \bullet Alle Delay-Timer erhalten als Default-Sollwert 2000 ns.
- Alle Kondensatorladegeräte erhalten Sollwert 0.
- Alle Istwerte und Time-Stamps werden mit 0 initialisiert.
- Die SE wird in den Eventmode-Betrieb geschaltet (nur bei Kaltstart der SE).
- Die Standard-Eventkonnektierungen werden gesetzt (nur bei Kaltstart der SE). Siehe Tabelle 4 auf Seite 24.

4.5.2 Warmstarts

Bei einem Warmstart werden folgende Aktionen durchgeführt:

- Es wird ein Gerätereset auf alle Einzelkomponenten durchgeführt.
- Die Interlockbehandlung wird aktiviert.
- Der aktuelle Gerätestatus wird ermittelt.
- Alle Istwerte und Time-Stamps werden mit 0 initialisiert.

4.6 Handbetrieb

Ein Handbetrieb der Kickeranlagen ist nicht möglich.

4.7 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus

Ein Hardwarefehler (angezeigt im Hardwarefehler-Bit des Status) liegt vor, wenn eines der folgenden Bits des Hardwarestatus *nicht* den angegebenen Wert (nicht OK) anzeigt.

Bit	Name	Wert
15	Modul ausgefallen	1

4.8 Verhalten bei Störungen

4.8.1 Geräteinterlock

Alle Kickerkomponenten sind modulweise über einen 24-Volt-Interlockkreis überwacht (siehe Abschnitt 3.3 auf Seit 17).

Eine Unterbrechung des 24-Volt-Interlockkreises kann über die Interlockkarte am Status der Interfacekarte des Kontrolleinschubs festgestellt werden. Zusätzlich melden die Kondensatorladegeräte über die Interlockleitung des MIL-Bus das Auftreten eines Hardwareinterlock.

Fällt ein Modul der Kickeranlage mit Interlock aus, so ist der ganze Kicker als ausgefallen zu betrachten.

4.8.2 Event-Sequenzfehler

Kommen die für die Kickersteuerung benötigten Events in falscher Reihenfolge, so ist an den Kondensatorladegeräten Sollwert 0 einzustellen und der Zyklus abzubrechen (Gerät geht bis zum Zyklusende in den Error-Zustand).

4.8.3 Event-Overrun

Bei der Steuerung der Kickeranlagen sind Event-Overruns zulässig, da an allen zeitkritischen Stellen durch verschiedene Informationen (Soll/Ist-Vergleiche, DRD-Interrupt zum richtigen Zeitpunkt, . . .) das korrekte Arbeiten des Gerätes (also der gesamten Kickeranlage) überprüft werden kann.

4.8.4 Ausfall der Kommunikation EC – Gerät

Der Ausfall der Kommunikation zwischen EC und Gerät führt zu einem Timeout bei allen Lesezugriffen auf das Gerät. Im Zuge der periodischen Überprüfung der Verfügbarkeit des Gerätes (im Falle des Kickers auch aller vorhandenen Teilkomponenten) wird das Gerät als offline deklariert und nicht mehr bedient, wenn die physikalisch vorhandenen Komponenten nicht mehr den Umfang eines logischen Gerätes erfüllen.

D.h. fällt beim Kickermodul 3 das zweite Kondensatorladegerät aus, so ist das ganze Modul 3 nicht mehr verfügbar. Die Gerätesoftware muß dann im Gerätestatus das Bit 15 (Modul ausgefallen siehe Statusdefinition auf Seite 19) auf 0 setzen und die Kickeranlage darf ohne explizites Initialisieren (INIT) durch einen Geräteverantwortlichen nicht weiter betrieben werden.

Bestand die ganze Kickeranlage nur aus diesem einen Modul 3, dann wird die ganze Kickeranlage als offline erklärt.

4.9 Bedienungsfehler vom Operating

Alle Vorgaben (Sollwerte) der Operating-Ebene müssen explizit auf Zulässigkeit überprüft werden. Unzulässige Vorgaben sind mit einer entsprechenden Fehlermeldung zurückzuweisen.

5 Die Repräsentation des Gerätes

Dieses Kapitel definiert das Gerätemodell, also wie das Gerät nach höheren Ebenen hin abgebildet wird. Es beschreibt die Schnittstelle zwischen Benutzerebene (Operatingprogrammen) und Geräteebene (Gerätehard- und -software).

Ein Gerät erscheint zur Benutzerebene im Umfang des in Abschnitt 3.6 definierten logischen Gerätes.

5.1 Kennzeichnung des Gerätemodells

Das Gerätemodell hat die Bezeichnung MK. Die Gerätemodellnummer ist 07_{dez} .

5.2 Die Master-Properties

Master-Properties									
Property	Klasse	Parameter		Ι	Oaten	Größe			
		Anz.	Тур	Anz.	Тур	Einh.	Exp.		
POWER	R/W	0	_	1	BitSet16	1	0		
STATUS	R	0	_	1	${\rm BitSet} 32$	1	0		
INIT	N	0	_	0	_	_	_		
RESET	N	0	_	0	_	_	_		
VERSION	RA	0	_	36	BitSet8	1	0		
INFOSTAT	RA	0	_	25	BitSet32	1	0		
EXTSTAT	RA	0	_	9	BitSet32	1	0		
CONSTANT	RA	0	_	94	RealF	1	0		
INFO	RA	0	_	1152	RealF	1	0		
OILTEMP	RA	0	_	32	RealF	1	0		

5.2.1 POWER

Bedeutung: Gibt an, ob der Leistungsteil des Gerätes ein- oder ausgeschaltet ist bzw. werden

soll.

Parameter: Keine.

Daten: Das Datum kann nur zwei Werte annehmen. Eins heißt, das Gerät ist eingeschaltet

bzw. soll eingeschaltet werden. Null heißt, das Gerät ist ausgeschaltet bzw. soll

ausgeschaltet werden.

5.2.2 STATUS

Bedeutung: Auslesen des 32bit Gerätestatus.

Parameter: Keine.

Daten: Das 32bit Statuswort. Die Bits entsprechen den Statusbits, wie sie in Abschnitt

3.7 auf Seite 19 und in der Tabelle 3.7 auf Seite 19 erklärt sind.

5.2.3 INIT

Bedeutung: Initialisierung des Gerätes (Kaltstart). Für die dabei durchzuführenden Aktionen

siehe Abschnitt 4.5.1 auf Seite 23.

Parameter: Keine.

Daten: Keine.

5.2.4 RESET

Bedeutung: Reset des Gerätes (Warmstart). Für die dabei durchzuführenden Aktionen siehe

Abschnitt 4.5.2 auf Seite 24.

Parameter: Keine.

Daten: Keine.

5.2.5 VERSION

Bedeutung: Lesen der Versionskennung der Gerätesoftware.

Parameter: Keine.

Daten: Versionskennung als ASCII-String, pro Datum ein ASCII-Zeichen.

	Inhalt
112	Version der USRs Version der EQMs
1324	Version der EQMs
2536	Version des Standard-MIL-Treibers
3748	Version der EQMs Version des Standard-MIL-Treibers Variante der EQMs

5.2.6 INFOSTAT

Bedeutung: Diese Property liefert einige wichtige Geräteinformationen in einem Zugriff. Die

Informationen werden direkt aus dem Dualport-RAM gelesen, also ohne den expliziten Aufruf eines EQMs, und sind daher in der Abarbeitung nicht abhängig

von Kommandoevents.

Parameter: Keine.

Daten: Die 25 Langworte enthalten im Einzelnen:

- 1: Gerätestatus (wie in der Property STATUS)
- 2: Gibt in den oberen 16 Bits an, welcher virtuelle Beschleuniger aktiv gesetzt ist (ein Bit pro Beschleuniger). Das niederwertigste Bit (Bit 16) gibt den Beschleuniger 15 an, das Bit 31 den Beschleuniger 0. Die unteren 16 Bit sind nicht verwendet. Dabei bedeutet Null, daß der Beschleuniger inaktiv ist und Eins, daß der Beschleuniger aktiv ist.
- 3: Master-Fehler. Hier ist derjenige Master-Gerätefehlercode mit dem schwersten Fehlergrad eingetragen. Bei mehreren Fehlern mit dem gleichen Fehlergrad wird der erste eingetragen, der gefunden wurde.
- 4: Slave Fehler für virtuellen Beschleuniger 0. Entsprechend dem Master-Fehler wird hier der nach dem Fehlergrad schwerste Slave-Gerätefehlercode für den Beschleuniger 0 eingetragen.
- 5: Entsprechend Punkt 4, aber für virtuellen Beschleuniger 1.

:

- 19: Entsprechend Punkt 4, aber für virtuellen Beschleuniger 15.
- **20:** EC-Mode. In den oberen 16 Bit des Langwortes steht der von der Gerätesoftware eingestellte Default-EC-Mode, in den unteren 16 Bit der aktuelle EC-Mode. Folgende Modi sind definiert:

0: not set

- 1: Preset_Command Der ECM hat das Umschalten in Command-Mode vorbereitet aber noch nicht beendet.
- Command Der ECM läuft im Command-Mode.
- 3: Preset_Event Der ECM hat das Umschalten in Event-Mode vorbereitet aber noch nicht beendet.
- Event Der ECM läuft im Event-Mode.
- 21: EC-Performance-Mode. In den oberen 16 Bit des Langwortes steht der von der Gerätesoftware eingestellte Default-Performance-Mode, in den unteren 16 Bit der aktuelle Performance-Mode. Folgende Modi sind definiert:
 - 0: not set
 - 1: Display Der ECM läuft im Display-Mode.
 - 2: Preset_Turbo Der ECM hat das Umschalten in den Turbo-Mode vorbereitet aber noch nicht beendet.
 - **3:** Turbo Der ECM läuft im Turbo-Mode.
- 22: HW_Warning_Maske. Die 32 Bits geben an aus welchen Bits im Gerätestatus das HW-Warning-Bit im Status abgeleitet wird.
- Pulszentralen-Identifikation:
 - **0**: TIF
 - 1: SIS-PZ
 - 2: ESR-PZ
 - 3...6: undefiniert
 - 7: Software-PZ
 - 8: UNILAC, Master-PZ
 - 9: UNILAC-PZ 1
 - **10:** UNILAC-PZ 2
 - 11: UNILAC-PZ 3
 - **12:** UNILAC-PZ 4
 - **13:** UNILAC-PZ 5
 - 14: UNILAC-PZ 6
 - **15:** UNILAC-PZ 7
- 24: Reserviert für Erweiterungen.
- 25: Reserviert für Erweiterungen.

5.2.7 EXTSTAT

Bedeutung: Liefert den Originalstatus (Einzelstatus) aller Module (bis zu 9). D.h. die Einzel-

> status, die nach UND-Verknüpfung den Gesamtstatus (Property STATUS) bilden. Fällt beispielsweise bei einem einzelnen Modul das Kondensatorladegerät 1 aus, wird im Gesamtstatus angezeigt, daß Netzgerät 1 Power off ist. Aus dem Einzelstatus aller Module läßt sich dann erkennen, bei welchem Modul das Netzgerät ausgefallen ist.

Parameter: Keine.

Daten: Bis zu neun 32bit Statusworte. Die Bits entsprechen den Statusbits, wie sie in der

Tabelle 3.7 auf Seite 19 erklärt sind.

1: Einzelstatus von Modul 1

- 2: Einzelstatus von Modul 2
- 9: Einzelstatus von Modul 9

5.2.8 CONSTANT

Bedeutung: Liefert einige gerätetypspezifische Konstanten aus der VME-Datenbasis zu einer Kickeranlage.

Parameter: Keine.

Daten: Die 94 Real-Werte bedeuten im Einzelnen:

1: max_PS_voltage: Maximaler Spannungssollwert am Netzgerät eines Moduls

- 2: max_module_HV: Maximaler Spannungssollwert für das Hochspannungskabel eines Moduls
- 3...29: PS_correct: Korrekturfaktoren für die Berechnung des Spannungssollwertes für jedes einzelne Netzgerät (Kondensatorladegerät):
 - 9 Korrekturfaktoren für die Netzgeräte, die bei HF-Triggerung benutzt werden (Kondensatorladegeräte 1).
 - 9 Korrekturfaktoren für die Netzgeräte, die bei Triggerung über den Timinggenerator benutzt werden (Kondensatorladegeräte 2).
 - 9 Korrekturfaktoren für die Netzgeräte, die bei Triggerung über den Timinggenerator zur Reinjektion benutzt werden (Kondensatorladegeräte 1).
- **30...56:** CL_correct: Korrekturfaktoren für die Berechnung des Spannungsistwertes jeder einzelnen Kondensatorbank:
 - 9 Korrekturfaktoren für die Kondensatorbänke, die bei HF-Triggerung benutzt werden (Kondensatorbänke 1).
 - 9 Korrekturfaktoren für die Kondensatorbänke, die bei Triggerung über den Timinggenerator benutzt werden (Kondensatorbänke 2).
 - 9 Korrekturfaktoren für die Kondensatorbänke, die bei Triggerung über den Timinggenerator zur Reinjektion benutzt werden (Kondensatorbänke 1).
- **57...65:** HV_correct: 9 Korrekturfaktoren für die Berechnung des Spannungsistwertes des Hochspannungskabels jedes einzelnen Moduls.
- **66...74:** HV_transform: 9 Übersetzungsverhältnisse der Hochspannungstransformatoren (für jedes Modul einzeln).
- 75...83: HV_divide: 9 Übersetzungsverhältnisse des Spannungsistwertes der Hochspannungsmeßteiler jedes einzelnen Moduls.
- **84...92:** resistance: 9 Werte für die Shunt-Widerstände der einzelnen Module in OHm.
- 93: main_ctr_freq: Zählfrequenz des Main-Delay-Timers in Hz
- 94: dump_ctr_freq: Zählfrequenz des Dump-Delay-Timers in Hz

5.2.9 INFO

Bedeutung: Liefert Informationen für jedes einzelne Modul über die letzten 32 Kicks.

Parameter: Keine.

Daten: Die 1152 Real-Werte bedeuten im Einzelnen:

- 1...128: Informationen über die letzten 32 Kicks von Modul 1. Folgende Informationen werden zu jedem einzelnen Kick geliefert:
 - 1. Nummer des virtuellen Beschleunigers, bei dem der Kick ausgeführt wurde
 - 2. Hochspannungsistwert
 - 3. gemessene Pulslänge
 - 4. Triggerart des Kicks (0: HF-Triggerung, 1: Triggerung über Timinggenerator, 2: Triggerung über Timinggenerator zur Reinjektion)

129...256: Informationen über die letzten 32 Kicks von Modul 2

:

1025...1152: Informationen über die letzten 32 Kicks von Modul 9

5.2.10 OILTEMP

Bedeutung: Liefert die aktuellen Temperaturen von allen Meßstellen (3 pro Modul) bei allen

Modulen (bis zu 9).

Parameter: Keine.

Daten: Die 32 Real-Werte bedeuten im Einzelnen:

1...3: 3 Temperaturwerte von Modul 1.

4...6: 3 Temperaturwerte von Modul 2.

:

25...27: 3 Temperaturwerte von Modul 9.

28...32: Zeitinformationen, wann die Temperaturen gemessen wurden:

- 1. Stunde
- 2. Minute
- 3. Sekunde
- 4. Millisekunde
- 5. Eventcode, mit dem die Messung veranlaßt wurde.

5.3 Die Slave-Properties

Slave-Properties								
Property	Klasse	Parameter		I	Daten		ißе	
		Anz. Typ		Anz.	Тур	Einh.	Exp.	
ACTIV	R/W	0	_	1	BitSet16	1	0	
EQMERROR	RA	217	Integer32	348	Integer32	1	0	
COPYSET	W	0	_	1	BitSet16	1	0	

STATINFO	RA	1	BitSet16	362	Integer32	1	0
DIAGNOSE	RA	0	_	497	RealF	1	0
VOLTRFS	RA/WA	0	_	2	RealF	V	3
VOLTRFI	RA	0	_	2	RealF	V	3
VOLTTGS	RA/WA	0	_	2	RealF	V	3
VOLTTGI	RA	0	_	2	RealF	V	3
VOLTRIS	RA/WA	0	_	2	RealF	V	3
VOLTRII	RA	0	_	2	RealF	V	3
TIMDELRF	R/W	0	_	1	RealF	\mathbf{S}	-9
TIMDELTG	R/W	0	_	1	RealF	\mathbf{S}	-9
TIMDELRI	R/W	0	_	1	RealF	\mathbf{s}	-9
TIMFTRF	R/W	0	_	1	RealF	\mathbf{S}	-9
TIMFTTG	R/W	0	_	1	RealF	\mathbf{S}	-9
TIMFTRI	R/W	0	_	1	RealF	\mathbf{S}	-9
ALLREFS	RA/WA	0	_	12	RealF	1	0

5.3.1 ACTIV

Bedeutung: Gibt an, ob das Gerät für den zugehörigen virtuellen Beschleuniger an der Puls-

zu-Puls-Modulation teilnehmen soll bzw teilnimmt.

Parameter: Keine.

Daten: Das Datum kann nur zwei Werte annehmen. Null heißt, das Gerät nimmt für den

zugeordneten Beschleuniger nicht an der PPM teil bzw. soll nicht an der PPM teilnehmen. Eins heißt, das Gerät nimmt für den zugeordneten Beschleuniger an

der PPM teil bzw. soll an der PPM teilnehmen.

5.3.2 EQMERROR

Bedeutung: Fehlermeldungen der auf der SE installierten Gerätesoftware. Es werden die aktu-

ellen Fehlermeldungen sowohl für die Masterfehler als auch für die Slavefehler der Geräteebene geliefert. Dazu wird auch der Inhalt des Fehlerpuffers zurückgegeben,

in dem die letzten aufgetretenen Fehler abgespeichert wurden.

Parameter: Hier hat nur der erste der 217 Parameter eine Bedeutung.

1: Wird bei konnektierten Aufträgen ausgewertet. 0: Es wird bei jeder Ausführung des Auftrages eine Antwort verschickt. 1: Es wird bei jeder Ausführung des Auftrages nur dann eine Antwort verschickt, wenn sich seit dem letzten Aufruf der Inhalt der Daten geändert hat.

2...217: Dummy, sie werden vom MOPS intern verwendet und können vom Benutzer beliebig gesetzt werden.

Daten: Die Anzahl der Fehlermeldungen sei bezeichnet durch:

m Zahl der Master-Fehlermeldungen

s Zahl der Slave-Fehlermeldungen

b Größe des Fehlerpuffers

Weiterhin soll gelten:

$$l = m + s$$

$$t = m + s + b$$

Die Daten im Einzelnen:

1: In den unteren beiden Bytes sind die Anzahl der Master-Fehlermeldungen m und die Anzahl der Slave-Fehlermeldungen s angegeben:

 $0 \quad 0 \quad s \quad m$

2: erste Master-Fehlermeldung

:

m+1: letzte Master-Fehlermeldung

m+2: erste Slave-Fehlermeldung

:

- l+1: letzte Slave-Fehlermeldung
- l+2: Länge b des Fehlerpuffers
- l+3: Zahl der Einträge im Fehlerpuffer
- l+4: Index des ersten freien Platzes im Fehlerpuffer
 - (der Fehlerpuffer ist ein Ringpuffer)
- l+5: Erster Speicherplatz im Fehlerpuffer

:

t+4: Letzter Speicherplatz im Fehlerpuffer

5.3.3 COPYSET

Bedeutung: Kopiert alle Geräteeinstellungen (Sollwerte) eines virtuellen ('fremden') Beschleu-

nigers in den zugehörigen ('eigenen') Beschleuniger.

Parameter: Keine.

Daten: Nummer des virtuellen ('fremden') Beschleunigers, von dem die Einstellungen

(Sollwerte) kopiert werden sollen.

5.3.4 STATINFO

Bedeutung: Liefert Statistik-Informationen für alle Kickermodule (bis zu 9).

Parameter: 1 BitSet16 Parameter gibt an, ob die Statistikdaten nach dem Lesen initialisiert

werden sollen (= 1) oder nicht (\neq 1).

Daten: Die 362 Integer32-Werte bedeuten:

1...40 Statistikdaten für Modul 1

- 1...7 Informationen zur größten Spannungsabweichung bei HF-Triggerung:
 - 1 größte Spannungsabweichung (Soll-Ist) in Volt
 - 2 Spannungssollwert
 - 3 Spannungsistwert
 - 4 Pulslängensollwert
 - 5 Pulslängenistwert

- 6 Datum, an dem die größte Spannungsabweichung an diesem Modul festgestellt wurde
- 7 Uhrzeit dazu
- 8...14 Informationen zur größten Spannungsabweichung bei TG-Triggerung:
- 15...21 Informationen zur größten Spannungsabweichung bei RI-Triggerung:
- **22...27** Informationen zur erreichten Pulslängengenauigkeit bei HF-Triggerung:
 - 22 Anzahl Kicks mit Pulslänge 0
 - 23 Anzahl Kicks mit Pulslängenabweichung $|Soll-Ist| \leq 125ns$
 - 24 Anzahl Kicks mit Pulslängenabweichung $|Soll-Ist| \leq 250ns$
 - **25** Anzahl Kicks mit Pulslängenabweichung |Soll Ist| > 250ns
 - **26** Anzahl Kicks mit $1600ns < Pulslänge \le 1900ns$
 - **27** Anzahl Kicks mit Pulslänge > 2900ns
- **28...33** Informationen zur erreichten Pulslängengenauigkeit bei TG-Triggerung:
- **34...39** Informationen zur erreichten Pulslängengenauigkeit bei RI-Triggerung:
- 40 Status des Moduls
- 41...80 Statistikdaten für Modul 2

:

- **320...360** Statistikdaten für Modul 9
- 361...362 Datum und Uhrzeit der Initialisierung der Statistikdaten.

5.3.5 DIAGNOSE

Bedeutung: Liefert Diagnoseinformationen für alle Module (bis zu 9).

Parameter: Keine.

Daten: Die 497 Real-Werte bedeuten:

- 1 Anzahl der aktuell verfügbaren Module
- 2...10 Adressen der Module 1 bis 9
- 11 Adresse des Timing-Kontroll-Einschubs
- 12...173 aktuelle Informationen über alle Module bei HF-Triggerung
 - 12...29 Informationen über Modul 1
 - 12 Anzahl der Shots
 - 13 Anzahl der Faulty-Shots
 - 14 Sollspannung für Kondensatorladegerät
 - 15 Istspannung am Kondensatorladegerät
 - 16 erwartete Spannung am HV-Kabel
 - 17 Spannung am HV-Kabel vor dem Kick

- 18 Spannung am HV-Kabel nach dem Kick
- 19 erwartete Spannung an der Kondensatorbank
- 20 Spannung an der Kondensatorbank vor dem Laden des HV-Kabel
- 21 Spannung an der Kondensatorbank nach dem Laden des HV-Kabel
- 22 Shuntstrom nach dem Laden des HV-Kabel
- 23 aktuelle Flattoplänge (Istwert)
- **24** frei
- **25...29** Stunde, Minute, Sekunde, Millisekunde und Event-Code bei dem die aktuellen Meßwerte aufgenommen wurden.
- **30...47** Informationen über Modul 2

:

156...172 Informationen über Modul 9

173...334 aktuelle Informationen über alle Module bei TG-Triggerung

335...497 aktuelle Informationen über alle Module bei TG-Triggerung

5.3.6 VOLTRFS

Bedeutung: Gibt an mit welchem Spannungssollwert die Kickeranlage bei HF-Triggerung be-

trieben wird bzw. betrieben werden soll.

Parameter: Keine.

Daten: Die beiden Real-Werte bedeuten:

1. Spannungssollwert für die Module 1 bis 5

2. Spannungssollwert für die Module 6 bis 9

5.3.7 VOLTRFI

Bedeutung: Liefert den Spannungsistwert der Kickeranlage beim zuletzt durchgeführten Kick

mit HF-Triggerung.

Parameter: Keine.

Daten: Die beiden Real-Werte bedeuten:

1. Spannungsistwert der Module 1 bis 5

2. Spannungsistwert der Module 6 bis 9

5.3.8 VOLTTGS

Bedeutung: Gibt an mit welchem Spannungssollwert die Kickeranlage bei Triggerung über den

Timinggenerator betrieben wird bzw. betrieben werden soll.

Parameter: Keine.

Daten: Die beiden Real-Werte bedeuten:

1. Spannungssollwert für die Module 1 bis 5

2. Spannungssollwert für die Module 6 bis 9

5.3.9 VOLTTGI

Bedeutung: Liefert den Spannungsistwert der Kickeranlage beim zuletzt durchgeführten Kick

mit Triggerung über den Timinggenerator.

Parameter: Keine.

Daten: Die beiden Real-Werte bedeuten:

1. Spannungsistwert der Module 1 bis 5

2. Spannungsistwert der Module 6 bis 9

5.3.10 VOLTRIS

Bedeutung: Gibt an mit welchem Spannungssollwert die Kickeranlage bei Triggerung über den

Timinggenerator zur Reinjektion betrieben wird bzw. betrieben werden soll.

Parameter: Keine.

Daten: Die beiden Real-Werte bedeuten:

1. Spannungssollwert für die Module 1 bis 5

2. Spannungssollwert für die Module 6 bis 9

5.3.11 VOLTRII

Bedeutung: Liefert den Spannungsistwert der Kickeranlage beim zuletzt durchgeführten Kick

mit Triggerung über den Timinggenerator zur Reinjektion.

Parameter: Keine.

Daten: Die beiden Real-Werte bedeuten:

1. Spannungsistwert der Module 1 bis 5

2. Spannungsistwert der Module 6 bis 9

5.3.12 TIMDELRF

Bedeutung: Gibt an mit welcher Verzögerungszeit der Delaytimer-Main bei HF-Triggerung

geladen wird bzw. werden soll.

Parameter: Keine.

Daten: Der Real-Wert gibt die Verzögerungszeit in ns an.

5.3.13 TIMDELTG

Bedeutung: Gibt an mit welcher Verzögerungszeit der Delaytimer-Main bei Triggerung über

den Timinggenerator geladen wird bzw. werden soll.

Parameter: Keine.

Daten: Der Real-Wert gibt die Verzögerungszeit in ns an.

5.3.14 TIMDELRI

Bedeutung: Gibt an mit welcher Verzögerungszeit der Delaytimer-Main bei Triggerung über

den Timinggenerator zur Reinjektion geladen wird bzw. werden soll.

Parameter: Keine.

Daten: Der Real-Wert gibt die Verzögerungszeit in ns an.

5.3.15 TIMFTRF

Bedeutung: Gibt an mit welcher Verzögerungszeit der Delaytimer-Dump bei HF-Triggerung

geladen wird bzw. werden soll.

Parameter: Keine.

Daten: Der Real-Wert gibt die Verzögerungszeit in ns an.

5.3.16 TIMFTTG

Bedeutung: Gibt an mit welcher Verzögerungszeit der Delaytimer-Dump bei Triggerung über

den Timinggenerator geladen wird bzw. werden soll.

Parameter: Keine.

Daten: Der Real-Wert gibt die Verzögerungszeit in ns an.

5.3.17 TIMFTRI

Bedeutung: Gibt an mit welcher Verzögerungszeit der Delaytimer-Dump bei Triggerung über

den Timinggenerator zur Reinjektion geladen wird bzw. werden soll.

Parameter: Keine.

Daten: Der Real-Wert gibt die Verzögerungszeit in ns an.

5.3.18 ALLREFS

Bedeutung: Gibt an mit welchen Sollwerten die Kickeranlage betrieben wird bzw. betrieben

werden soll und zwar für alle Triggerarten.

Parameter: Keine.

Daten: Die 12 Real-Werte bedeuten:

1...4 Sollwerte für HF-Triggerung

• Spannungssollwert in V für die Module 1 bis 5

• Spannungssollwert in V für die Module 6 bis 9

• Delayzeit in ns

• Flattopzeit in ns

5...8 Sollwerte für TG-Triggerung

• Spannungssollwert in V für die Module 1 bis 5

• Spannungssollwert in V für die Module 6 bis 9

• Delayzeit in ns

• Flattopzeit in ns

$\boldsymbol{9\dots12}$ Sollwerte für RI-Triggerung

- $\bullet\,$ Spannungssollwert in V für die Module 1 bis 5
- $\bullet\,$ Spannungssollwert in V für die Module 6 bis 9
- Delayzeit in ns
- Flattopzeit in ns

Teil II

Der Entwurf der Software

6 Softwareentwurf

Kein Besonderheiten.

7 Lokale Datenbasis

7.1 Tabelle der Konstanten

Für jedes Gerät gibt es eine Beschreibung aus 94 Elementen in der Konstantentabelle der lokalen Datenbasis. Die Elemente haben in der Reihenfolge folgende Bedeutung:

- 1: max_PS_voltage: Maximaler Spannungssollwert am Netzgerät eines Moduls
- 2: max_module_HV: Maximaler Spannungssollwert für das Hochspannungskabel eines Moduls
- 3...29: PS_correct: Korrekturfaktoren für die Berechnung des Spannungssollwertes für jedes einzelne Netzgerät (Kondensatorladegerät):
 - 9 Korrekturfaktoren für die Netzgeräte, die bei HF-Triggerung benutzt werden (Kondensatorladegeräte 1).
 - 9 Korrekturfaktoren für die Netzgeräte, die bei Triggerung über den Timinggenerator benutzt werden (Kondensatorladegeräte 2).
 - 9 Korrekturfaktoren für die Netzgeräte, die bei Triggerung über den Timinggenerator zur Reinjektion benutzt werden (Kondensatorladegeräte 1).
- **30...56:** CL_correct: Korrekturfaktoren für die Berechnung des Spannungsistwertes jeder einzelnen Kondensatorbank:
 - 9 Korrekturfaktoren für die Kondensatorbänke, die bei HF-Triggerung benutzt werden (Kondensatorbänke 1).
 - 9 Korrekturfaktoren für die Kondensatorbänke, die bei Triggerung über den Timinggenerator benutzt werden (Kondensatorbänke 2).
 - 9 Korrekturfaktoren für die Kondensatorbänke, die bei Triggerung über den Timinggenerator zur Reinjektion benutzt werden (Kondensatorbänke 1).
- **57...65:** HV_correct: 9 Korrekturfaktoren für die Berechnung des Spannungsistwertes des Hochspannungskabels jedes einzelnen Moduls.
- **66...74:** HV_transform: 9 Übersetzungsverhältnisse der Hochspannungstransformatoren (für jedes Modul einzeln).
- 75...83: HV_divide: 9 Übersetzungsverhältnisse des Spannungsistwertes der Hochspannungsmeßteiler jedes einzelnen Moduls.
- 84...92: resistance: 9 Werte für die Shunt-Widerstände der einzelnen Module in OHm.
- 93: main_ctr_freq: Zählfrequenz des Main-Delay-Timers in Hz
- 94: dump_ctr_freq: Zählfrequenz des Dump-Delay-Timers in Hz

8 Dualport RAM

Kein erwähnenswerten Besonderheiten.

9 USRs - User Service Routinen

9.1 Obligatorische USRs

- 9.1.1 N_Init
- 9.1.2 N_Reset
- 9.1.3 R_Status
- 9.1.4 R_Power
- 9.1.5 W_Power
- 9.1.6 R_Active
- 9.1.7 W_Active
- 9.1.8 W_CopySet
- 9.1.9 R_EQMErr
- 9.1.10 R_Version
- 9.1.11 R_InfoStat

9.2 Gerätespezifische USRs

Zuzüglich der obligatorischen USRs werden für die Steuerung der Kickeranlagen folgende gerätespezifischen USRs benötigt:

9.2.1 R_Constant

Gerätespezifische Konstanten lesen.

9.2.2 R_Info

Liefert Informationen für jedes einzelne Modul über die letzten 32 Kicks.

9.2.3 R_Oiltemp

Liefert die aktuellen Temperaturen von allen Meßstellen (3 pro Modul) bei allen Modulen (bis zu 9).

9.2.4 R_Diagnose

Liefert Diagnoseinformationen für alle Module (bis zu 9).

9.2.5 R_VoltRFS

Liefert den Spannungssollwert für HF-Triggerung.

9.2.6 W_VoltRFS

Setzt den Spannungssollwert für HF-Triggerung.

9.2.7 R_VoltRFI

Liefert den Spannungsistwert für HF-Triggerung.

9.2.8 R_VoltTGS

Liefert den Spannungssollwert für TG-Triggerung.

9.2.9 W_VoltTGS

Setzt den Spannungssollwert für TG-Triggerung.

9.2.10 R_VoltTGI

Liefert den Spannungsistwert für TG-Triggerung.

9.2.11 R_VoltRIS

Liefert den Spannungssollwert für Reinjektion.

9.2.12 W_VoltRIS

Setzt den Spannungssollwert für Reinjektion.

9.2.13 R_VoltRII

Liefert den Spannungsistwert für Reinjektion.

9.2.14 R_TimDelRFS

Liefert die Verzögerungszeit des Delaytimer-Main bei HF-Triggerung.

9.2.15 W_TimDelRFS

Setzt die Verzögerungszeit des Delaytimer-Main bei HF-Triggerung.

9.2.16 R_TimDelTGS

Liefert die Verzögerungszeit des Delaytimer-Main bei TG-Triggerung.

9.2.17 W_TimDelTGS

Setzt die Verzögerungszeit des Delaytimer-Main bei TG-Triggerung.

9.2.18 R_TimDelRIS

Liefert die Verzögerungszeit des Delaytimer-Main bei Reinjektion.

9.2.19 W_TimDelRIS

Setzt die Verzögerungszeit des Delaytimer-Main bei Reinjektion.

9.2.20 R_TimFTRFS

Liefert die Verzögerungszeit des Delaytimer-Dump bei HF-Triggerung.

9.2.21 W_TimFTRFS

Setzt die Verzögerungszeit des Delaytimer-Dump bei HF-Triggerung.

9.2.22 R_TimFtTGS

Liefert die Verzögerungszeit des Delaytimer-Dump bei TG-Triggerung.

9.2.23 W_TimFtTGS

Setzt die Verzögerungszeit des Delaytimer-Dump bei TG-Triggerung.

9.2.24 R_TimFtRIS

Liefert die Verzögerungszeit des Delaytimer-Dump bei Reinjektion.

9.2.25 W_TimFtRIS

Setzt die Verzögerungszeit des Delaytimer-Dump bei Reinjektion.

9.2.26 R_AllRefS

Liefert alle Sollwerte für alle Triggerarten.

9.2.27 W_AllRefS

Setzt alle Sollwerte für alle Triggerarten.

9.2.28 R_StatInfoS

Liefert statistische Informationen über alle Kickermodule.

9.3 Globale Routinen

9.3.1 Get_db_Constants

Lesen der gerätespezifischen Konstanten aus der VME-Datenbank und kopieren derselben in die dafür vorgesehene Struktur im Dualport-RAM der SE.

10 EQMs - Equipment Module

10.1 Interne Zustände

10.1.1 Bedeutung der internen Zustände

Für die Gerätesoftware sind folgende interne Zustände definiert:

not_set Initzustand. Dieser Zustand sollte nie

auftreten.

emergency Ein Emergency-Event wurde empfan-

gen. Dieser Zustand darf nur durch Rücksetzen vom Operating verlassen

werden.

interlock Es wurde ein Interlock gemeldet. In

einem periodisch ablaufenden Auftrag wird überprüft, ob die Interlock-Ursache noch vorliegt. Falls nein, Übergang

nach ready.

local Das Gerät wird mit Handsteuerung be-

trieben.

power_off Das Gerät ist ausgeschaltet.

power_seq Das Gerät schaltet gerade ein oder aus. error Während der Abarbeitung eines EQMs

wurde ein Fehler erkannt.

ready Das Gerät ist bereit für Aktionen. Aus-

gangszustand am Beginn eines virtuel-

len Beschleunigers.

cold Das Gerät ist noch nicht betriebsbe-

reit, weil die Vorheizzeit der Thyratrons (Zeitrelais mit 15 Minuten) noch nicht

abgeaufen ist.

Sollwert bekommen und werden gerade

aufgeladen.

prep_1 Die Ladung von Kondensatorbank 1

wurde auf das Hochspannungskabel geschaltet, damit ist der nächste Kick vor-

bereitet.

prep_2 Die Ladung von Kondensatorbank 2

wurde auf das Hochspannungskabel geschaltet, damit ist der nächste Kick vor-

ereitet.

sharp_1, sharp_2 Die Spannung am Hochspannungskabel

wurde kontrolliert und die Delaytimer

enabled.

kicked_1, kicked_2 Das Startsignal für die Delaytimer wur-

de empfangen und der vorbereitete Kick

ausgeführt.

10.1.2 Übergänge zwischen den Zuständen

Die Zustände und die Übergänge zwischen denselben sind in den Tabellen 8 und 9 zusammengefaßt. Die Legende zu diesen Tabellen ist in Tabelle 10 zu finden.

Tabelle der Zustandsübergänge 1									
von↓ nac	$h \rightarrow$	emergency	interlock	local	power_off	power_seq	error	ready	
emergency	U:	_	RESET, SI	RESET	RESET		_	RESET	
	B:	_		r	Rp	_	_	RP	
	A:	-	InterlEQM	ResetEQM	ResetEQM	-	_	ResetEQM	
interlock	U:	EvtEmerg	-	RESET	RESET	-	_	RESET	
	B:		_	r	Rp	_	_	$R_{\mathbf{p}}$	
	A:	EmergEQM	_	SIOffChk,	SIOffChk,	_	_	SIOffChk,	
				ResetEQM	ResetEQM			ResetEQM	
local	U:	EvtEmerg	SI		-	_	_	-	
	B:		_	_	Rp	_	_	RP	
	A:	EmergEQM	InterlEQM	_	Status lesen	_	_	Status lesen	
			•		(periodisch)			(periodisch)	
power_off	U:	EvtEmerg	SI	_	-	Power=1	_	-	
	B:	_	_	r	_	_	_	RP	
	A:	EmergEQM	InterlEQM	Status lesen	_	PowerEQM	-	Status lesen	
		•	•	(periodisch)		•		(periodisch)	
power_seq	U:	EvtEmerg	SI	-	_	_	MIL timeout	-	
P	B:	_	_	r	$R_{\rm P}$	_	_	RP	
	A:	EmergEQM	InterlEQM	Status lesen	ChkPwrEQM	_	ChkPwrEQM	ChkPwrEQM	
				(periodisch)					
error	U:	EvtEmerg	SI	-	_	_	_	RESET,	
								Zyklusende	
	B:	_	_	r	$R_{\rm P}$	_	_	RP	
	A:	EmergEQM	InterlEOM	Status lesen	Status lesen	_	_	ResetEQM,	
				(periodisch)	(periodisch)			ChkShotEQM	
ready	U:	EvtEmerg	SI	-	-	Power=0	overrun etc.	_	
	B:	_	_	r	$R_{\mathbf{p}}$	_	_	_	
	A:	EmergEQM	InterlEOM	Status lesen	Status lesen	PowerEQM	div. EOMs	_	
		•	•	(periodisch)	(periodisch)	•	•		
cold	U:	EvtEmerg	SI	-	-	-	-	=	
	B:	_	_	_	_	_	_	C	
	A:	EmergEQM	InterlEQM	_	_	_	-	ChkTempEQM	
c_load	U:	EvtEmerg	SI	_	_	_	_		
	B:	_	_	_	_	_	_	_	
	A:	EmergEQM	InterlEQM	_	_	_	-	-	
prep_1,	U:	EvtEmerg	SI	_	_	_	_	_	
prep_2			ĺ						
1 - 1	B:	_	-	_	-	_		-	
	A:	EmergEQM	InterlEQM	_	_	_	_	_	
sharp_1,	U:		SI	-		-	-	-	
sharp_2			ĺ						
	B:	_	_	_	_	_	_	_	
	A:	EmergEQM	InterlEQM	_	_	_	_	_	
kicked_1,	U:	EvtEmerg	SI	_	_	_	_	_	
kicked_2	٥.								
	B:	_	_	_	_	_	_	_	
		EmergEQM	InterlEQM	_	_	_	_	_	
				l	l	l			

Tabelle 8: Zustandsübergangsdiagramm 1

von↓ nach		cold	c_load	prep_1	prep_2	sharp_1	sharp_2	kicked_1	kicked_2
					prep_2	snarp_1	snarp_2	K1CKed_I	Kicked_2
emergency		-	-	-	-		-	-	_
	В:	-	-	-	_	-	_	-	-
	A:	-	-	-	_	-	_	-	-
interlock	U:	-	-	-	-	-		-	-
	$\mathbf{B}\colon$	-	-	-	_	-	-	-	-
	A:	-	-	-	_	-	-	-	-
local	U:	-	-	-	-	-	-	-	-
	В:	-	-	-	_	-	_	_	_
	A:	_	_	_	_	-	_	_	_
power_off	U:	_	_	-	_	_	_	_	_
p	B:	_	_	_	_	_	_	_	_
	A:	_	_	_	_	_	_	_	_
power_seq	U:	_	_	_	_	_	_	_	_
power_seq	B:	c		_	_	_	_	_	_
	A:	ChkPwrEQM	_	_	_	_	_	_	
	U:	CHKEWIEGM	_	_	_	_	_	_	
error		-	-	-	_	_	_	_	_
	В:	-	_	_	_	_	_	_	_
	A:	-	-	-	-	-	-	-	_
$_{ m ready}$	U:	-	EVTPrepReInj,	-	_	_	-	_	-
			EVTPrepKick1,						
			EVTPrepKick2						
	$_{\mathrm{B}}$:	-	-	-	_	_	-	_	-
	A:	=	LoadCapaEQM	-	-			-	-
cold	U:	-	-	-	_	-	-	-	-
	B:	-	_	-	-		_	_	_
	A:	_	_	_	_	_	_	_	_
c_load	U:	_	_	EVTMKLoadReinj,	EVTMKLoad2	_	_	_	_
	-			EVTMKLoad1	_ ,				
	B:		_	LVIMICLOSGI					
	A:	_	_	LoadCabl1EQM	LoadCabl2EQM	_	_	_	_
	U:			LoadCabiTEQM	LoadCabi2EQM		_		
prep_1	B:	_	_	_	_	_	_	_	_
		_		_			_	_	_
2	A:	_	_	_	_	ChkCablEQM	_	_	-
prep_2	U:			-	-		-		-
	В:	-	_	-	-	-		-	_
	A:	-	-	-	_	-	ChkCablEQM	_	_
sharp_1	U:			-	-		-	ExtTrig	-
	В:	-	-	-	-	-	-	-	_
	A:	_	_			_		DRDEQM	_
sharp_2	U:	-	-	-	_	-	_	_	ExtTrig
-	B:	_	_	-	_	-	_	_	-
	A:		-	-	_		-	-	DRDEQ
kicked_1	U:	_	_	EVTMKLoad1	_	_	_	_	
	B:				_	_	_		
	A:	_	_	LoadCabl1EQM	_	_	_	_	_
				TOWN SPITE CIM	- 10				
kicked_2	U:			_	EVTMKLoad2		_		_
	В:	-	_	-	_	-	-	-	-
	A:	-	-	_	LoadCabl2EQM	-	-	-	_

Tabelle 9: Zustandsübergangsdiagramm 2

10.1.3 Standard-Zustandsübergänge

Beispiel: Schnelle Extraktion mit nur einem Kick

Innerhalb eines virtuellen Beschleunigers wird zum Setzen der Sollwerte an den Kondensatorladegeräten der Zustand ready erwartet und zum Zustand c_load weitergeschaltet. Zum Laden des Hochspannungskabels wird der Zustand c_load erwartet und zum Zustand prep_1 weitergeschaltet. Nach 7 ms wird zum Überprüfen der Spannung am HV-Kabel der Zustand prep_1 erwartet und nach enable der Delaytimer zum Zustand sharp_1 weitergeschaltet. Beim Empfang des Triggersignals für die Kicker wird der Zustand sharp_1 erwartet und nach kicked_1 weitergeschaltet. Nach Abschluß der Extraktion (Evt_Extr_End) wird der Zustand kicked_1 erwartet und nach ready weitergeschaltet.

Legende

• Die Priorität der Zustände (höchste Priorität zuerst): emergency, interlock, local, power_off und power_seq, cold, error, c_load, prep_1, prep_2, sharp_1, sharp_2, kicked_1, kicked_2, ready.

Liegen mehrere Bedingungen für verschiedene Zustände gleichzeitig vor (z.B. Netz aus und Gerät auf Handbetrieb), muß der jeweils wichtigste Zustand eingenommen werden.

• U: Auslösende Ursache.

SI Summeninterlock des Gerätes steht an

Evt... Pulszentrale verschickte Evt.... RESET Reset wird per Kommando oder Knöpfchendrücken ausgelöst

Power=1 Power wird per Kommando eingeschaltet.
Power=0 Power wird per Kommando ausgeschaltet.
ExtTrig Triggersignal (DRD-Interrupt) wurde empfangen.

B: Abzuprüfende Bedingung.

R Remotebit des Status steht auf Remote.
r Remotebit des Status steht auf Local.
P Powerbit des Status steht auf Power on.
p Powerbit des Status steht auf Power off.

C Röhren sind vorgeheizt.

c Röhrenvorheizzeit (15 Minuten) läuft noch. Röhren sind noch nicht warm genug

• A: Ausführende Stelle des Zustandübergangs

Status lesen (period.) Beim periodischen (oder zumindest regelmäßigen) Lesen des Status. \dots EQM Innerhalb des EQMs \dots EQM.

Tabelle 10: Legende zu den Zustandsübergangsdiagrammen

10.2 Eventkonnektierte EQMs

10.2.1 LoadCapacities_EQM

Event: Evt_Prep_Kick_1 (75), Evt_Prep_Kick_2 (76), Evt_Prep_Re_Inj (74).

Aktion: Sollwert am Kondensatorladegerät (entsprechend dem Event) setzen. Siehe hierzu

Abschnitt 4.1.1 "Kondensatorbänke laden" auf Seite 20.

10.2.2 LoadCable1_EQM

Event: Evt_MK_Load_1 (47), Evt_MK_Load_Re_Inj (77).

Aktion: Laden des Hochspannungskabels von der Kondensatorbank 1. Siehe hierzu Ab-

schnitt 4.1.3 "Hochspannungskabel laden" auf Seite 21. Mit einer Verzögerung von 7 ms wird das CheckCable_EQM zur Überprüfung der Kabelspannung und enable der Delaytimer gestartet (siehe hierzu Abschnitt 4.1.4 "Spannung am HV-Kabel

kontrollieren" auf Seite 21).

10.2.3 LoadCable2_EQM

Event: Evt_MK_Load_2 (48).

Aktion: Laden des Hochspannungskabels von der Kondensatorbank 2. Siehe hierzu Ab-

schnitt 4.1.3 "Hochspannungskabel laden" auf Seite 21. Mit einer Verzögerung von 7 ms wird das CheckCable_EQM zur Überprüfung der Kabelspannung und enable der Delaytimer gestartet (siehe hierzu Abschnitt 4.1.4 "Spannung am HV-Kabel

kontrollieren" auf Seite 21).

10.2.4 CheckShot_EQM

Event: Evt_Re_Inj_End (73), Evt_Extr_End (51).

Aktion: Auswertung der Diagnosedaten, die Aufschluß über Erfolg oder Misserfolg beim

letzten Kick geben. Siehe hierzu Abschnitt 4.1.9 "Auswertung der Diagnose" auf

Seite 22.

10.2.5 Emerg_EQM

Event: Evt_Emergency.

Aktion: Internen Zustand auf 'Emergency' setzen. Die Kondensatorladegeräte erhalten

Sollwert 0.

10.3 Periodisch konnektierte EQMs

 $10.3.1 \quad Check Remote_EQM$

Zeit: 10s

Anzahl: Beliebig oft, solange das Gerät auf *Hand* steht.

Aktion: Überprüfung, ob das Gerät immer noch auf *Hand* steht.

10.3.2 CheckTemp_EQM

Zeit: 10s

Anzahl: beliebige oft, solange das Zeitrelais für die Röhrenvorheizung (15 s) nicht abgelau-

fen ist.

Aktion: Status des Zeitrelais prüfen.

10.3.3 CheckOilTemp_EQM

Zeit: 30*s*

Anzahl: Unendlich.

Aktion: Lesen der Temperaturwerte an allen Meßstellen und Vergleich mit einem Schwell-

wert. Bei Uberschreitung des Schwellwertes wird ein Alarm mit Angabe der Mo-

dulnummer erzeugt.

10.3.4 CheckPower_EQM

Zeit: 1s

Anzahl: einmalige Ausführung.

Aktion: Überprüfen, ob der EIN/AUS-Befehl an den einzelnen Komponenten korrekt und

vollständig ausgeführt wurde.

10.3.5 Update_Config_EQM

Zeit: 60s

Anzahl: Unendlich.

Aktion: Aktualisieren der Geräteverfügbarkeit: Es wird versucht, von möglichen Geräte-

adressen den Status zu lesen. Erfolgt eine Reaktion, wird das Gerät als 'online'

geführt.

10.4 An externe Interrupts konnektierte EQMs

10.4.1 Interlock_EQM

Interrupt: Summen-Interlock.

Aktion: Internen Zustand auf 'Interlock' setzen, falls er nicht 'Emergency' ist. Die Kon-

densatorladegeräte erhalten Sollwert 0.

10.4.2 DRD_EQM

Interrupt: Data Ready Interrupt.

Aktion: Prüfen (anhand des internen Zustandes), ob der Interrupt, der direkt aus dem

Triggersignal zum Starten der Delaytimer (und damit zum Zünden der Kicker)

abgeleitet wird, zur richtigen Zeit gekommen ist.

10.4.3 DRQ_EQM

Interrupt: Data Request Interrupt.

Aktion: Keine Aktion.

10.5 Kommandogetriggerte EQMs

10.5.1 Dev_Init_EQM

10.5.2 Dev_Reset_EQM

10.5.3 Status_EQM

10.5.4 Active_EQM

10.5.5 Power_EQM

10.6 EQMs für die Diagnose vor Ort

10.6.1 Display_Dia_EQM

Parameter: Das EQM benötigt 2 Parameter.

1. virtueller Beschleuniger (in Hex angeben)

2. logische Gerätenummer (in Hex angeben)

Daten: Keine.

Aktion: Zeigt am Bildschirm vor Ort die wichtigsten Diagnosedaten aus dem DPRAM für

alle Module des angegebenen Gerätes im gewählten virtuellen Beschleuniger an.

10.6.2 Display_DPR_EQM

Parameter: Das EQM benötigt 2 Parameter.

1. virtueller Beschleuniger (in Hex angeben)

2. logische Gerätenummer (in Hex angeben)

Daten: Keine.

Aktion: Zeigt am Bildschirm vor Ort die wichtigsten Daten aus dem DPRAM für das

gewählte Gerät und den gewählten virtuellen Beschleuniger an.

10.6.3 Display_DevErr_EQM

Parameter: Das EQM benötigt 2 Parameter.

1. virtueller Beschleuniger (in Hex angeben)

2. logische Gerätenummer (in Hex angeben)

Daten: Keine.

Aktion: Zeigt am Bildschirm vor Ort die Error-Codes aus der aus der Datenstruktur im

Dualport-RAM für das gewählte Gerät und den gewählten virt. Beschleuniger an.

10.7 Sonstige EQMs

10.7.1 Startup_EQM

Installiert die Event-EQM-Konnektierung für alle virtuellen Beschleuniger (siehe hierzu auch Abschnitt 4.4 auf Seite 23) und schaltet die SE in den Event-Mode.

10.7.2 Dev_Online_Test_EQM

Stellt fest, ob ein Gerät vorhanden ist und ob sich die Anzahl der verfügbaren Module geändert hat.

10.8 Globale Routinen

Hier werden alle Routinen aufgeführt, die im Modul EQMs global definiert sind und von verschiedenen EQMs benutzt werden.

10.8.1 Read_and_Update_Status

Aktualisiert den Gerätestatus im DPRAM.

10.8.2 Do_Intr_Service_Prep

Enable aller benötigten Interrupts an den Interfacekarten und enable der Interrupts an der CPU.

10.8.3 Handle_Completion

Erzeugt ExtDevSpecAlarm mit den Modulnummern in der Alarmextension, wenn ein neuer Fehler aufgetreten ist. Erzeugt einfachen DevSpecAlarm, wenn ein Fehlercode durch eine "Ok-Meldung" überschrieben wird.

10.8.4 CheckShot

Wertet die Diagnosedaten des letzten Kicks aus.

10.8.5 CheckLoadCapacitiy

Überprüft die Spannung den Spannungsistwert der Kondensatorladegeräte und der Kondensatorbänke.

10.8.6 CheckCableCapacitiy

Überprüft die Spannung am Hochspannungskabel un den Spannungsistwert der Kondensatorbänke nach dem Laden des HV-Kabels.

10.8.7 CheckLoadCurrent

Überprüft den Shuntstrom nach dem Laden des HV-Kabels.

10.8.8 ClearCapacities

Setzt Sollwert 0 an den Kondensatorladegeräten.

10.8.9 Set_Power_on

Schaltet alle Module ein und setzt das CheckPower_EQM als periodischen Auftrag auf.

10.8.10 Add_Peri_CheckTemp

Setzt das CheckTemp_EQM als periodischen Auftrag auf.

10.8.11 Add_Peri_CheckOilTemp

Setzt das CheckOilTemp_EQM als periodischen Auftrag auf.

10.8.12 Initialise_Diagnose

Initialisiert die Diagnosedaten.

11 Varianten

Die Varianten der Kicker-Gerätesoftware unterscheiden sich nur in der Event-EQM Zuordnung für die EQMs zum Laden des Hochspannungskabels und in der physikalischen Geräteadresse, mit der das Gerät als Nomenklatur erscheint.

Die Varianten im Einzelnen:

Variant 1 (MK\$MKE.PIN) Extraktionskicker.

Events zum Kabel laden: Evt_MK_Load_1 und Evt_MK_Load_2. Physikalische Geräteadresse: 1.

Variant 2 (MK\$MKQ.PIN) Q-Kicker.

Events zum Kabel laden: $Evt_MQ_Start_1$ und $Evt_MQ_Start_2$. Physikalische Geräteadresse: 10.

12 Besonderheiten

12.1 Fehlerbehandlung

Da die Kickeranlagen aus mehreren Modulen bestehen, wird bei der Erzeugung einer Fehlermeldung stets ein ExtDevSpecAlarm erzeugt, wobei in der Alarmextension die Nummern der Module stehen, bei denen dieser Fehler festgestellt wurde. "Ok-Meldungen" werden ohne Modulangabe als einfache DevSpecAlarm erzeugt.

Index

Symbole $$	EQMs	. 42
Ändamungannatakall	• An externe Interrupts konnektierte	. 48
Änderungsprotokoll2	– DRD_EQM	. 48
	– DRQ _ EQM	. 48
—A—	- Interlock_EQM	.48
	• Eventkonnektierte	
Abriß2	$-$ CheckShot_EQM	. 46
Active_EQM	– Emerg_EQM	
An externe Interrupts konnektierte EQMs 48	- LoadCable1_EQM	
Aufgabe des Gerätes	- LoadCable2_EQM	
Ausschalten	- LoadCapacities_EQM	
Auswertung der Diagnose	• für die Diagnose vor Ort	
	– Display_DevErr_EQM	
—B—	– Display_Dia_EQM	
	– Display_DPR_EQM	
Bedienung des Gerätes	• Globale Routinen	
Bedienungsfehler	- Add_Peri_CheckOilTemp	
Besonderheiten	- Add_Peri_CheckTemp	
	- CheckCableCapacitiy	
—C—	- CheckLoadCapacitiy	
-	- CheckLoadCurrent	
CheckOilTemp_EQM	- CheckShot	. 49
CheckPower_EQM	- ClearCapacities	
CheckRemote_EQM	- Do_Intr_Service_Prep	
CheckShot_EQM	- Handle_Completion	
CheckTemp_EQM	- Initialise_Diagnose	
	- Read_and_Update_Status	
—D—	- Set_Power_on	
_	• Kommandogetriggerte	
Datenbasis	- Active_EQM	
Delay-Timer	– Dev_Init_EQM	
Delaytimer vorbereiten	– Dev_Reset_EQM	
Dev_Init_EQM	– Power_EQM	
Dev_Online_Test_EQM	- Status_EQM	
Display_DevErr_EQM	• Periodisch konnektierte	
Display_Dia_EQM	- CheckOilTemp_EQM	
Display_DPR_EQM	- CheckPower_EQM	
DRD Interrupt	- CheckRemote_EQM	
DRD_EQM	- CheckTemp_EQM	
DRQ Interrupt	- Update_Config_EQM	
DRQ_EQM	• Sonstige	
Dualport RAM	- Dev_Online_Test_EQM	
-	- Startup_EQM	
	Event-Overrun	
— E —	Event-Sequenzfehler	
Einschalten	Eventkonnektierte EQMs	
Emerg_EQM	Eventkonnektierungen	

— F —	ifb_rdstat
Faulty-Shot-Überwachung	ifb_rdstat_int
Funktionscodes	ifb_reset
• ifb_addr_bus_w	ifb_soll_110
• ifb_data_bus_r	Init23
• ifb_data_bus_w	Input/Output-Karte
• ifb_intr_mask	Interfacekarte
• ifb_ist_1	Interlock
• ifb_power_off	Interlock_EQM 48
• ifb_power_on	Interlockkarte
• ifb_rdstat11	Interlockkreis (24 V)
• ifb_rdstat_int	Interne Zustände
• ifb_reset	Interrupt
• ifb_soll_1 10	• DRD Interrupt
Funktionsweise8	• DRQ Interrupt
	• Interlock
—G—	
Genauigkeitsanforderungen	—K—
Gerät	Kaltstarts
• Aufgabe7	Kickerhardware
• Bedienung	Kommandogetriggerte EQMs48
• Hardware	Komponentenstatus
• logisches	Kondensatorbänke laden20
• Repräsentation	Kondensatorladung überprüfen 21
• Schnittstelle	Konfigurationsabfrage
Gerätemodell	Konfigurationsänderung 20
• Kennzeichnung	
• Master-Properties	
Gesamtstatus	—L—
Globale Routinen	LoadCable1_EQM
Globale Routinei	LoadCable2_EQM
	LoadCapacities_EQM
—H—	logisches Gerät
Handbetrieb	Lokale Datenbasis
Hardware des Gerätes	• Tabelle der Konstanten39
Hardwarefehler-Bit	
Hardwarestatus	
Hochspannungserzeugung	-M $-$
Hochspannungskabel laden	M · D · ·
or or or	Master-Properties
	Multifunktionale Interfacekarte14, 17
—I—	Multiplexer-ADC-Karte
I/O-Karte14, 17	MUX-ADC-Karte
ifb_addr_bus_w	
ifb_data_bus_r	N.T
ifb_data_bus_w10	—N—
ifb_intr_mask	N_Init
ifb_ist_111	N_Reset
$ifb_power_on, ifb_power_off10$	Normalbetrieb

—0—	R_Oiltemp40
Overrun	R_Power40
Overruii	R_StatInfoS42
	R_Status40
—P—	R_TimDelRFS41
_	R_TimDelRIS41
Periodisch konnektierte EQMs47	R_TimDelTGS41
Phys./techn. Größen14	R_TimFTRFS
Power_EQM	R_TimFtRIS42
Prinzipieller Aufbau 8	R_TimFtTGS42
Properties	R_Version40
• ACTIV 31	R_VoltRFI41
• ALLREFS	R_VoltRFS
• CONSTANT	R_VoltRII
• COPYSET32	R_VoltRIS
• DIAGNOSE	R_VoltTGI
• EQMERROR 31	R_VoltTGS
• EXTSTAT 28	Repräsentation des Gerätes
• INFO	Reset
• INFOSTAT 27	
• INIT	
• Master	—S—
• OILTEMP 30	Schnittstelle zum Gerät10
• POWER	Sequenzfehler
• RESET 27	Shuntstrom überprüfen
• Slave	Signale und phys./techn. Größen14
• STATINFO 32	Slave-Properties
• STATUS	Softwareentwurf
• TIMDELRF	Softwarestatus
• TIMDELRI	Sonstige EQMs
• TIMDELTG	Spannung am HV-Kabel kontrollieren21
• TIMFTRF	Spezielle Interfacekomponenten
• TIMFTRI36	Standardzyklus SIS
• TIMFTTG36	Starten der Delaytimer
• VERSION	Startup_EQM
• VOLTRFI34	Startwerte
• VOLTRFS	Status_EQM
• VOLTRII	Statusbits
• VOLTRIS	Störungen
• VOLTTGI	• Event-Overrun
• VOLTTGS34	• Event-Sequenzfehler
Pulslängenmessung	• Interlock
	• Kommunikation EC – Gerät
	• Rommunikation EC Gerat29
—R—	
P. Activo	—T—
R_Active	Thyratronsteuerung
R_AllRefS	Timing
R_Constant	1 mmg
R_Diagnose	
R_EQMErr	—U—
R_Info	II. 1-4- CC. FOM
R_InfoStat40	Update_Config_EQM47

USRs	_w_
• gerätespezifische40	• •
- R_AllRefS42	W_Active40
- R_Constant	W_AllRefS
- R_Diagnose	W_CopySet
- R_Info	W_Power
- R_Oiltemp	W_TimDelRFS
- R_StatInfoS	W_TimDelRIS
- R_TimDelRFS	W_TimDelTGS
- R_TimDelRIS	W_TimFTRFS
- R_TimDelTGS	W_TimFtRIS
- R_TimFTRFS	W_TimFtTGS
- R_TimFtRIS	W_VoltRFS
- R_TimFtTGS	W_VoltRIS
- R_VoltRFI	W_VoltTGS
- R_VoltRFS	Warmstarts24
- R_VoltRII	
- R_VoltRIS	— z —
- R_VoltTGI	_
	Zeitkritische Anforderungen23
- R_VoltTGS	Zustände
- W_AllRefS	• Interne
- W_TimDelRFS41	– Übergänge43
- W_TimDelRIS	– Bedeutung42
- W_TimDelTGS	- Standard-Übergänge 45
- W_TimFTRFS	Zünden des Kickers22
- W_TimFtRIS	
- W_TimFtTGS	
- W_VoltRFS40	
- W_VoltRIS41	
- W_VoltTGS	
• Globale Routinen	
- Get_db_Constants	
• obligatorische	
- N_Init40	
- N_Reset	
- R_Active40	
- R_EQMErr	
- R_InfoStat	
- R_Power	
- R_Status	
- R_Version	
- W_Active	
- W_CopySet	
- W_Power	
v	
Varianten	
• Betriebs23	
• Software50	