

Issued: 10. Jun. 2024 Key: F-DGX-05

Printed: 11. Juni 2024

DGX - Profilgitter

G. Riehl P. Kainberger $\label{eq:definition} \textit{Dieses Papier enthält die Beschreibung des Ger\"{a}temodells \ "DGX - Profilgitter" \ und \ den \ Entwurf \ der \ Ger\"{a}tesoftware f\"{u}r \ dieses \ Ger\"{a}t.}$

Ein Profilgitter wird zur Diagnose des Schwerionenstrahls verwendet. Es besteht aus einem Rahmen mit parallelen, vertikalen oder horizontalen Drähten, der zur Strahldiagnose in den Strahl gefahren wird. Durch die Messung der von den Sekundär-Elektronen in den Drähten induzierten Ströme läßt sich die Lage und Intensität des Strahles bestimmen.

	Anderungsprotokoll							
Datum	GM-Version	Name	Kommentar					
03. Jul. 00	DG_02	P. Kainberger	Beginn einer Neufassung					
November 00	_	MK	Überarbeitete und erweiterte TEX-Ver-					
			sion, die sowohl in PostScript als auch					
			in HTML konvertiert werden kann.					
05. Jul. 01	DG_02	UK	Properties aufgenommen					
12. Nov. 03	DG_05	P.Kainberger	Aktualisierung					
10. Jun. 24	DG_05	P.Kainberger	Aktualisierung					

Inhaltsverzeichnis

Ι	Da	s Gerätemodell	7
1	Die	Aufgabe des Gerätes	7
2	Die	Hardware des Gerätes	7
	2.1	Gerätevarianten	8
3	Die	Schnittstelle zum Gerät	9
	3.1	Funktionscodes der Interfacekarte	9
	3.2	Besonderheiten SD-Interface	11
		3.2.1 Spezialitäten Integratorgitter mit SD-Interface	11
	3.3	Data Ready (DRD) Interrupts	12
	3.4	Definition der Bits des Hardwarestatus	12
4	Die	Bedienung des Gerätes	13
-	4.1	Aufgaben im Normalbetrieb	13
	4.2	Zeitkritische Anforderungen	13
	4.3	Einordnung in das Timing	14
	4.4	Festlegung von Startwerten	14
	4.4	4.4.1 Kaltstart der SE	14
		4.4.2 Kaltstarts	14
		4.4.3 Warmstarts	15
	4 5	Handbetrieb	$\frac{15}{15}$
	$4.5 \\ 4.6$	Ableitung des Hardwarefehler-Bits aus dem Gerätestatus	15 15
	_	<u> </u>	
	4.7	Verhalten bei Störungen	15
		4.7.1 Event-Sequenzfehler	15
		4.7.2 Event-Overrun	15
	4.8	4.7.3 Ausfall der Kommunikation EC – Gerät	15 15
5		Repräsentation des Gerätes	15
		Kennzeichnung des Gerätemodells	16
	5.2	Die Master-Properties	16
		5.2.1 POWER	16
		5.2.2 STATUS	16
		5.2.3 INIT	16
		5.2.4 RESET	16
		5.2.5 VERSION	17
		5.2.6 INFOSTAT	17
		5.2.7 INFO	18
		5.2.8 REMOTE	19
	5.3	Die Slave-Properties	20
		5.3.1 ACTIV	20
		5.3.2 EQMERROR	20
		5.3.3 COPYSET	21
		5.3.4 INTEGRAT	21
		5.3.5 WKMODE	21
		5.3.6 AXIS	21
		5.3.7 DATASTAT	22
		5.3.8 GAINMODI	22

	5.3.11 5.3.12	GAINMODS GAINRNGI		 	 	 	 			 22 22 22 23 23
Π	I Der En	twurf der Softwar	e							25
6	Softwaree 6.1 Beson	ntwurf derheiten		 	 	 	 			 25 25
7	Lokale Da	tenbasis								25
8	Dualport	RAM								25
9		ser Service Routinen								25
	9.1 Geräte 9.1.1	espezifische USRs \dots R_BeamInfo \dots								$\frac{25}{25}$
10	n EOMs - F	quipment Module								26
10		e Zustände								26
		Bedeutung der interner								26
		Übergänge zwischen de								26
		Standard-Zustandsüber								28
		konnektierte EQMs								28
		Vorb_EQM								28
		Mess_EQM								28
		Read_EQM								28
		lisch konnektierte EQMs								29
		Update_Config_EQM .								29
		terne Interrupts konnekt								$\frac{29}{29}$
		Interlock_EQM	-							29
		DRD_EQM								29
		DRQ_EQM								29
		nandogetriggerte EQMs								29
		Dev_Init_EQM								29
		Dev_Reset_EQM								29
		Status_EQM								29
		Active_EQM								29
		Power_EQM								29
		für die Diagnose vor Or								29
		Display_DPR_EQM								29
		Display_DevErr_EQM								30
		DispInfo_EQM								30
		DispInto_EQM								30
		DispRawData_EQM								30
		ge EQMs								30
		Startup_EQM								30
		le Routinen								30
		Read_and_Update_Stat								31
		Do Intr Service Pren		 •	 •	 	 	•	•	 31

11 Varianten	31
Index	33

Teil I

Das Gerätemodell

1 Die Aufgabe des Gerätes

In allen Beschleunigerabschnitten (UNILAC, SIS, ESR, Transferstrecken) ist es notwendig, über die Qualität des Schwerionen-Strahles informiert zu sein.

Auf dem Weg von der Quelle zum Ziel kann der Strahl beschleunigt, abgebremst, ausgeleitet, wieder eingeleitet, in seiner Lage verändert, gemessen oder bewußt zerstört werden. Alle Einflüße auf den Strahl beeinflußen seine Qualität, d.h. beispielsweise seine Intensität und seine Lage. Um diese Korrigieren, bzw. Optimieren zu können, muß der Strahl beobachtet werden können. Zu diesem Zweck befinden sich Diagnose-Elemente entlang des Strahlführungs-Rohres. Eines dieser Elemente sind die Profilgitter, die die Intensitätsverteilung im Strahl in Abhängigkeit einer transversalen Koordinate messen sollen: I(x) und I(y).

Das Gerät nimmt an der Puls-zu-Puls-Modulation teil. Es können also verschiedene Strahlsorten in unterschiedlichen virtuellen Beschleunigern beobachtet werden.

2 Die Hardware des Gerätes

Hier wird ein Überblick über die Funktionsweise des Gerätes gegeben, also wie es aufgebaut ist und wie es intern funktioniert.

Die typische Geräte-Hardware besteht aus einer der SE nachgeschalteten Interface-Karte, die Funktionsgeneratoren und/oder AD-Wandler bedient. Der SE ist also nur reine Hardware nachgeschaltet.

Von dieser Konzeption ist man aus Kostengründen bei der Strahl-Diagnose abgewichen.

Die Hardware im Strahlweg besteht aus einem Rahmen mit parallelen Drähten in X- und/oder Y-Richtung. Anzahl und Abstand der Profildrähte können variieren. Die max. Anzahl von Profilgitterdrähten ist derzeit auf 203 festgelegt. Dabei ist zu beachten, daß die Anzahl der Mess-Verstärker begrenzt ist, eine Profilgitter-Messelektronik besitzt max. 128 Verstärker-Kanäle. Bei Gittern mit höherer Drahtzahl werden verschiedene Drähte zusammengelegt, sodaß maximal 128 Profilströme verstärkt werden müssen. Die zusammengelegten Signale werden im VME-Rechner wieder entfaltet (expandiert).

Die Messelektroniken verfügen u.a. über verschiedene Mess-Bereiche und/oder Mess-Zeiten und einen eingebauten und zuschaltbaren Teststromgenerator

Um Verstärker zu sparen, werden Multiplexer (MPX) verwendet, die bis zu acht Kanäle zu je 128 Drähten an die Messelektronik schalten können. Es kann aber in einem Beschleuniger-Zyklus nur der gerade zugeschaltete Multiplexer-Kanal bzw. die an ihm anliegenden Profilströme gemessen werden. Ausnahme: Integrator-Elektronik, dieser Typ der Messelektronik misst alle 8 Kanäle gleichzeitig.

Darüberhinaus ist es optional möglich, jede Ebene (x,y) des Gitters an zwei verschiedene MPX-Kanäle anzuschließen. Ein komplettes Gitter (x und y Ebene) kann deshalb über vier verschiedene MPX-Kanäle verteilt sein. Umgekehrt ist es ebenfalls erlaubt bis zu vier verschiedene Gitter bzw. Teile von Gittern, an einen einzelnen MPX-Kanal anzuschließen.

Durch die Aufteilung eines Gitters auf mehrere MPX-Kanäle, von denen pro Beschleuniger-Zyklus nur einer gemessen wird, benötigt man für eine Profilgittermessung mehrere Beschleuniger-Zyklen. Die hieraus folgenden, tiefgreifenden Konsequenzen füer die Ansteuerung, das Fehlerhandling und die quasi-paralelle Messung mehrere Gitter und/oder mehrerer virtueller Beschleuniger wird im Kapitel "Software-Entwurf" beschrieben.

Um Multiplexer und Verstärker-Elektronik zu schalten, werden folgende Hardware-Varianten unterschieden:

- An einigen Stellen wird noch ein Strahldiagnose-Mikro-Prozessor (SD μ P) verwendet. Er besteht aus einem 8-Bit Prozessor (8085) mit I/O-Peripherie. Dem SD μ P vorgeschaltet ist eine Interface-Karte, die SE kommuniziert über ein spezielles Protokoll (MIL-SDN) mit Interface-Karte und SD μ P .
- Die neueren Elektroniken werden nur noch mit dem SD-Interface aufgebaut. Auch dafür gibt es eine Treiberunterstützung (MIL-SDI).

Die Elektronik hält in einem EEPROM (bei $SD\mu P$ EPROM) alle nötigen Informationen über Art und Anzahl der angeschlossenen Profilgitter bereit (s. Property INFO in Abs. 5.2.7 auf Seite 18). Aus diesen Informationen werden auf der SE-Ebene einzelne Profilgitter als *logische* Geräte gebildet. An einer Elektronik sind bis zu 32 Gitter möglich.

2.1 Gerätevarianten

Die Gerätekonstellationen (SD μ P bzw. SD-Interface) können sich in folgenden prinzipiellen Eigenschaften unterscheiden:

- Anzahl angeschlossener Profilgitter/SD μ P (bzw. SD-Interface)
- Aufteilung der Gitter auf die MPX-Kanäle
- Anzahl und Abstand der Profildrähte eines Gitters
- Gitter mit/ohne Drahtexpandierung, Art der Expandierung
- Typ der Profilgitter-Elektronik (PGE), die Unterschiede betreffen das nötige/mögliche Timing, Datenbreite (Bits), sowie Anzahl der möglichen Messbereiche und Messzeiten.
 - Offsetkompensierte PGE (von DGX nicht unterstützt)
 - Standard-PGE
 - Integrator-PGE
- Anzahl und Differenzierung der Messbereiche und Messzeiten.
- Polarität der Daten

Alle vorstehend aufgeführten Geräte-Varianten werden durch das Geräte-Info im $SD\mu P$ (bzw. SD-Interface) beschrieben und müssen von der Control-Software berücksichtigt werden. Abhängig vom Typ der Elektronik und vom zu berücksichtigenden Timing werden die folgenden Software-Gerätevarianten benötigt. Sie werden in späteren Kapiteln genauer beschrieben werden:

- UNI-SDI: Standardgitter im Unilac mit Strahldiagnose-Interface
- SIS-SDI: Integratorgitter in Hochenergie-Strahlführung mit Strahldiagnose-Interface
- SIS-SDIMED: wie SIS-SDI aber mit zusätzlichen Therapie-Funktionen
- TK-SDN: Standardgitter im transferkanal mit alter SD μ P -Schnittstelle
- \bullet SIS-SDN: Gitter (Standard- oder Integrator-Gitter) in SIS/ESR mit alter SD μP Schnittstelle
- SIS-SDNMED: wie SIS-SDN aber mit zusätzlichen Therapie-Funktionen

3 Die Schnittstelle zum Gerät

Zur näheren Erläuterung der Eigenschaften des $SD\mu P$ und des SD-Interface sei hier auf die ausführlichen Dokumentationen der Strahldiagnose-Gruppe verwiesen.

3.1 Funktionscodes der Interfacekarte

Die für die Geräteansteuerung definierten Funktionscodes sind in der folgenden Tabelle aufgelistet. Als Modus ist angegeben, ob Daten von der Interfacekarte gelesen werden, ob Daten zu der Interfacekarte geschrieben werden, oder ob nur eine Funktion ausgeführt wird.

Bei dem StrahlDiagnose-MIL-Protokoll (MIL-SDN) muss dabei unterschieden werden, ob direkt mit der IFB kommuniziert wird, oder ob die IFB das Kommando/die Daten zum $\mathrm{SD}\mu\mathrm{P}$ durchreicht. Die beiden Versionen werden durch unterschiedliche Adressierungs-Modi unterschieden. Funktions-Codes, die direkt die IFB ansprechen, werden in der folgenden Tabelle durch (IFB) in der Spalte "Bedeutung" gekennzeichnet.

Funktionscode		Modus	Bedeutung
Name	Hex		
ifb_reset	01	Funktion	(IFB) Reset des $SD\mu P$
ifb_soll_1	06	Schreiben	Vorbereitung der Elektronik
ifb_intr_mask	12	Schreiben	(IFB) Interruptmaske setzen
$ifb_dev_fct_1$	20	Funktion	Daten sichern Kommando für $\mathrm{SD}\mu\mathrm{P}$
ifb_tst_in	7F	Schreiben	Testdaten zum $\mathrm{SD}\mu\mathrm{P}$
ifb_ist_1	81	Lesen	Profildaten lesen
ifb_ist_2	82	Lesen	PG-Info lesen
ifb_rdstat	C0	Lesen	16-Bit Gerätestatus lesen
ifb_rdstat_int	C9	Lesen	(IFB) Status der Interfacekarte lesen
ifb_ec_err	FD	Lesen	Error Buffer vom $SD\mu P$
ifb_tst_out	FE	Lesen	Testdaten vom $SD\mu P$

ifb_reset

Der $SD\mu P$ wird über die IFB resetet.

ifb_soll_1

Übertragung der Vorbereitungsdaten an die Elektronik.

ifb_intr_mask

Schreiben der Interruptmaske der Interfacekarte.

ifb_dev_fct_1

"Daten sichern" Kommando, der $SD\mu P$ liest die gemessenen Profilstromdaten aus dem Puffer der Elektronik und speichert sie in seinem eigenen RAM.

BEACHTEN: Der SD μ P wartet nach Erhalt des Kommandos auf ein Messsung fertig-Bit der Elektronik und ist in der Zwischenzeit nicht mehr ansprechbar.

ifb_tst_in

Zur Kontrolle der MIL-Verbindung werden Testdaten von der SE zum $\mathrm{SD}\mu\mathrm{P}$ geschrieben.

ifb_ist_1

Die SE liest die Profilstromdaten vom $SD\mu P$. Dieser holt die Daten aus seinem RAM. Das Datenformat ist der $SD\mu P$ -Dokumentation zu entnehmen.

ifb_ist_2

Die SE liest die Info-Daten eines Gitters vom SD μ P . Das Datenformat ist der SD μ P - Dokumentation zu entnehmen.

ifb_rdstat

Lesen des 16-Bit Gerätestatus.

Die Bit des Gerätestatus sind bei der $\mathrm{SD}\mu\mathrm{P}$ -Schnittstelle wie folgt:

Bit	Name	Bedeu	itung
		High (= 1)	Low $(=0)$
0	frei	-	-
1	frei	-	-
2	frei	-	-
3	frei	-	-
4	frei	-	-
5	frei	-	-
6	frei	-	-
7	frei	-	-
8	Netz Digital-Elektronik	ein	aus
9	Remote Analog-Elektronik	Fernb.	Handb.
10	frei	-	-
11	frei	-	-
12	frei	-	-
13	frei	-	-
14	frei	-	-
15	Gerät Online	ja	nein

Die SD-Interface -Schnittstelle liefert folgende Status-Informationen:

Bit	Name	Bedeutun	g
		High (= 1)	Low $(=0)$
03	aktueller Meßbereich	015	
46	aktuelle Kanalnummer	07	
7	Integrationsmode	Normalmode	Fastmode
8	reserviert	_	_
9	Rechner/Hand-Betrieb	Rechner	Handbetrieb
10	Triggermodus	intern	extern
11	Power aktueller Kanal	nicht belegt oder aus	ok
12	Integrations	gestartet	_
13	Integrations	abgebrochen	_
14	Digitalisierung	gestartet	_
15	Digitalisierung	beendet	_

ifb_rdstat_int

Lesen des Status der Interface-Karte.

ifb_ec_err

Der $SD\mu P$ legt ein Protokoll der aufgetretenen MIL-Fehler an. Mit diesem Befehl wird dieses Protokoll ausgelesen. Um die Auswertung der Daten kümmert sich der SDN-Mil-Trieber.

ifb_tst_out

Test der MIL-Verbindung, lesen von Testdaten vom $SD\mu P$.

3.2 Besonderheiten SD-Interface

DualPortRam

Das SD-Interface erlaubt jederzeit Zugriff auf den lokalen Speicher (DPRAM) der Schnittstelle, sodaß die SE stets den Gerätestatus ermitteln kann. Allerdings kann es zu Problemen kommen, wenn die SE einen ganzen Speicherbereich im DPRAM lesen will, während die Elektronik von der Hardwareseite aus das DPRAM beschreibt. Folglich empfiehlt es sich mit dem Lesen der Daten aus dem DPRAM zu warten, bis die Elektronik mit der Digitalisierung fertig ist.

PowerFail

Ältere DG-Hardware lieferte im Status ein Power-Fail-Bit, das nur Gültigkeit besaß für den Kanal, der gerade gemessen wurde. Die DGX-Elektronik mit SD-Interface liefert mit Funktionscode 82_{Hex} ein Power-Fail-Register mit folgendem Inhalt:

Bit	Name	Bedeu	0
		High (= 1)	Low $(=0)$
0	PowerFail Kanal 0	failure	ok
1	PowerFail Kanal 1	failure	ok
2	PowerFail Kanal 2	failure	ok
3	PowerFail Kanal 3	failure	ok
4	PowerFail Kanal 4	failure	ok
5	PowerFail Kanal 5	failure	ok
6	PowerFail Kanal 6	failure	ok
7	PowerFail Kanal 7	failure	ok
815	frei	_	_

Damit kann für alle Kanäle eines Gitters der PowerFail-Zustand ermittelt werden.

DRD-Interrupt

Nach erfolgter Messung meldet sich das SD-Interface mit einem Data-Ready-Interrupt, wenn die Integration abgeschlossen ist und die Digitalisierung der Daten beginnt. Die SE-Ebene sollte dann aber noch (entgegen der SD-Interface -Beschreibung) bis zum Ende der Digitalisierung warten, bevor sie die Daten abholt (s. o.).

Messen mit internem Trigger

Über das SD-Interface ist die SE in der Lage ohne jeglichen externen Trigger eine Profilgittermessung durchzuführen (per Software getriggert). Diese Funktion wird derzeit aber noch nicht benutzt. Es ist aber eine Zusatzmessung zur Offsetkompensation im Gespräch.

3.2.1 Spezialitäten Integratorgitter mit SD-Interface

2 Schnittstellen

Das SD-Interface für Integratorgitter erlaubt neben der Nutzung des Gerätes über eine SE noch eine zweite Schnittstelle, über die ein PC angeschlossen werden kann. Da das Gerät

zu einem Zeitpunkt immer nur von einer Schnittstelle aus sinnvoll bedienen werden kann, muß die Rechnerhoheit immer auf die entsprechende Schnittstelle geschaltet sein. Über eine Steckbrücke kann festgelegt werden, welche der beiden Schnittstellen die Schalthoheit hat.

Nur die SE-Schnittstelle verfügt über ausreichend Informationen über das laufende Timing um die Rechnerhoheit zyklussynchron umschalten zu können. Deshalb wurden folgende Bedingungen vereinbart:

- Für den SE-Anschluß wird immer die linke der beiden Schnittstellen benutzt.
- Die Steckbrücke muß gesteckt sein. D. h. die linke Schnittstelle hat die Schalthoheit.

Ist eine der Bedingungen nicht erfüllt, werden alle Geräte dieser Elektronik als *not remote* angezeigt und entsprechend behandelt. Die Schalthoheit kann über eine Property (REMOTE) zwischen beiden Schnittstellen umgeschaltet werden. Wird die Schnittstelle auf PC geschaltet, wird ebenfalls *not remote* angezeigt.

Integrationszeit-Istwert

Das SD-Interface mißt in einem 32-Bit Register die tatsächliche Integrationszeit (in μ s) und speichert diese im DPRAM, wenn die Integration vorzeitig beendet wurde. Dieser Wert kann mit den Funktionscodes 84_{Hex} (für die Bits 0...15) und 84_{Hex} (für die Bits 16...31) gelesen werden.

Fastmode

Im Abstand von ca 1.4 ms macht die Elektronik soviele Messungen wie möglich, bis entweder der Speicher voll oder der Zyklus zu Ende ist. Dieser Modus wird vom Kontrollsystem aus bisher nicht unterstützt.

3.3 Data Ready (DRD) Interrupts

Das SD-Interface meldet mit einem DRD-Interrupt, daß die Integration beendet ist. Entgegen der Beschreibung des SD-Interface dürfen die Daten aber erst nach Beendigung der Digitalisierung gelesen werden.

3.4 Definition der Bits des Hardwarestatus

Das Gerät liefert Statusinformationen, die im Wesentlichen dynamische Informationen zur laufenden Messung beinhalten. Nur die Powerfail- und die Remote-Anzeige werden für den Gerätestatus ausgewertet.

Die Bits 0 . . . 7 sind die systemweiten sogenannten generierten Softwarestatusbits (in engl. derived status bits).

Die Statusbits im Einzelnen sind in der folgenden Tabelle zusammengefaßt.

Bit	Name	Bedeutung			
		High (1)	Low (0)		
0	Power	on	off		
1	Remote/Local	Remote	Local		
$\frac{2}{3}$	res	served	•		
3	reserved				
4	Emergency	no	yes		
5	Interlock	no	yes		
6	HW Error	no	yes		
7	SW Error	no	yes		
8	not used	l (always	1)		
9		:			
31	not used	l (always	1)		

4 Die Bedienung des Gerätes

4.1 Aufgaben im Normalbetrieb

Der "normale" Messablauf im SIS-Timing sieht wie folgt aus:

Vorbereitung An der Elektronik werden Messbereich, Integr.-Zeiten etc. gesetzt, der entsprechende Multiplexerkanal wird zugeschaltet.

Messen Beim nächsten Messtrigger (dieser geht direkt an die Elektronik) wird mit diesen Vorbereitungsdaten eine Profilstrom-Messung begonnen.

Digitalisieren Die Messdaten werden von der Elektronik in das $SD\mu P$ -RAM (bzw. SD-Interface -DPRAM) eingelesen.

Daten lesen Messdaten vom $SD\mu P$ (bzw. SD-Interface) zur SE übertragen.

Im UNILAC- und HLI-Timing kann dieser Ablauf mit einem $SD\mu P$ länger als 20ms dauern, deshalb unterstützt die DGX-Gerätesoftware in diesen Bereichen nur Elektroniken mit SD-Interface . Ebenso werden Elektroniken mit Offsetabgleich von der DGX-Gerätesoftware nicht unterstützt.

4.2 Zeitkritische Anforderungen

Folgende zeitkritische Anforderungen existieren von Seiten des Gerätes:

• Vorbereitung Standard-PGE:

Die Vorbereitung muss mindestens ?? m
sek vor dem Messtrigger beim $\mathrm{SD}\mu\mathrm{P}$ sein, damit vor Beginn der Mess
ung Messbereiche etc. übernommen und der richtige Multiplexer-Kanal geschaltet wird.

• Vorbereitung Integrator-PGE:

Die Vorbereitung muss mindestens ?? m
sek vor dem Messtrigger beim $\mathrm{SD}\mu\mathrm{P}$ sein, damit vor Beginn der Messung Messbereiche etc. übernommen werden. Es wird kein Multiplexerkanal geschaltet und es ist kein Offsetabgleich nötig.

• Messdauer Standard PGE:

Die Elektronik benötigt 0.5 ms zur Profilstrommessung und 5 ms zur Datendigitalisierung, also insgesamt 5.5 ms vom Eingang Messtrigger bis Daten abholbereit im Puffer.

• Messdauer Integrator PGE:

Die Elektronik benötigt mindestens (??) 10ms zur Profilstrommessung (Eingang Messtrigger bis Daten abholbereit im Puffer). Bei langen Integrationszeiten ergibt sich die Messzeit zu Integrationszeit + ?? msek.

4.3 Einordnung in das Timing

Bei der Einordnung in das Timing wird bei den Profilgittern zwischen dem zeit-unkritischen SIS-Timing auf der einen und den zeitkritischen Unilac und HLI-Timings auf der anderen Seite unterschieden. Für die verschiedenen Timings und Elektroniken werden verschiedene Event-Konnektierungen und Programm-Abläufe verwendet.

SIS und ESR Dieses Timing wird im gesamten Bereich des SIS- und des ESR-Timings verwendet.

Event	Aktion
Evt_Start_Cycle (32)	Meßvorbereitung senden
Evt_End_Cycle (55)	Lesen der Daten

Tabelle 1: SIS/ESR-Eventkonnektierungen für DGX

UNI und TK Dieses Timing wird im Bereich des Unilacs (nur mit SD-Interface) und des Transfer-Kanals (auch SD μ P) verwendet.

Event	Aktion
Evt_Prep_Next_Acc (16)	
Evt_Beam_On (6)	Lesen der Daten mit 500 μ s
	Verzögerung starten

Tabelle 2: UNI-Eventkonnektierungen für DGX

4.4 Festlegung von Startwerten

4.4.1 Kaltstart der SE

Bei einem Kaltstart der SE werden u.a. folgende Aktionen durchgeführt:

- Die SE wird in den Eventmode-Betrieb geschaltet.
- Die Standard-Eventkonnektierungen werden gesetzt (siehe Tabelle 4.3 auf Seite 14).
- Alle Verwaltungsdaten werden initialisiert.

4.4.2 Kaltstarts

Bei einem Kaltstart werden folgende Aktionen durchgeführt:

- Es wird ein Hardware-Reset der Geräte durchgeführt.
- $\bullet\,$ Die Verwaltungsdaten der EQMs werden initialisiert.
- Das PG-Info wird vom SDμP gelesen und die Gitter/Kanal-Struktur wird aufgebaut.
- Alle Sollwerte werden für alle virtuellen Beschleuniger auf die Defaultwerte gesetzt.
- Das Gerät wird für alle Beschleuniger deaktiviert.

4.4.3 Warmstarts

Bei einem Warmstart werden folgende Aktionen durchgeführt:

- Es wird ein Hardware-Reset der Geräte durchgeführt.
- Das PG-Info wird vom SD μ P gelesen und die Gitter/Kanal-Struktur wird aufgebaut.
- Das Gerät wird für alle Beschleuniger deaktiviert.

4.5 Handbetrieb

Der Handbetrieb ist im Remote-Bit des Gerätestatus gekennzeichnet. Der $\mathrm{SD}\mu\mathrm{P}$ bzw. das SD-Interface ist auch im Handbetrieb (der Elektronik) erreichbar, das Gerät ist also online, eine Messung vom Kontrollsystem aus jedoch nicht möglich. Zu beachten sind hierbei die Besonderheiten bei der Verwendung eines SD-Interface mit Integratorgitter (s. Abs. 3.2.1 auf Seite 11).

4.6 Ableitung des Hardwarefehler-Bits aus dem Gerätestatus

Hardwarefehler-Bits sind im Gerätestatus nicht definiert, alle Bits des Hardwarestatus müssen auf 1 (=OK) stehen.

4.7 Verhalten bei Störungen

4.7.1 Event-Sequenzfehler

Die normale Behandlung bei einem Sequenz-Fehler: Zyklus abbrechen. Da sich viele Gitter auf mehrere Kanäle verteilen und deshalb eine Gittermessung aus mehreren Kanal-Messungen und mehreren Zyklen zusammensetzt, entspricht der Abbruch eines Zyklus nicht dem Abbruch einer Gittermessung. Die VME-Software versucht den fehlerhaften Zyklus zu wiederholen.

4.7.2 Event-Overrun

Durch den Ausschluß der Gerätehardware, die zu Timingproblemen führen kann (z. B. $SD\mu P$ im HLI) erscheint eine Overrunbehandlung nicht mehr notwendig.

4.7.3 Ausfall der Kommunikation EC – Gerät

Der Ausfall der Kommunikation zwischen EC und Gerät führt zu einem Timeout. Die Online-Überwachung durch das Kontrollsystem sorgt dafür, daß das Gerät offline wird.

4.8 Bedienungsfehler vom Operating

Bedienfehler der Operating-Ebene müssen soweit abgefangen werden, daß die Profilgittermessung nicht verhindert wird.

5 Die Repräsentation des Gerätes

Dieses Kapitel definiert das Gerätemodell, also wie das Gerät nach höheren Ebenen hin abgebildet wird. Es beschreibt die Schnittstelle zwischen Benutzerebene (Operatingprogrammen) und Geräteebene (Gerätehard- und -software).

5.1 Kennzeichnung des Gerätemodells

Das Gerätemodell hat die Bezeichnung DGX.

Die Gerätemodellnummer ist 43_{dez} .

5.2 Die Master-Properties

Master Properties								
Property	Klasse	Parai	neter	Ι	Oaten	Grö	iβe	
		Anz.	Тур	Anz.	Тур	Einh.	Exp.	
POWER	R/W	0	_	1	BitSet16	1	0	
STATUS	R	0	_	1	BitSet32	1	0	
INIT	N	0	_	0	_	_	_	
RESET	N	0	_	0	_	_	_	
VERSION	RA	0	_	48	BitSet8	1	0	
INFOSTAT	RA	0	_	25	BitSet32	1	0	
INFO	RA	0	_	778	BitSet8	1	0	
REMOTE	W	0	_	1	BitSet16	1	0	

5.2.1 POWER

Bedeutung: Gibt an, ob der Leistungsteil des Gerätes ein- oder ausgeschaltet ist bzw. werden

soll.

Das Gerät DGX hat keinen Leistungsschalter. Beim Lesen wird angezeigt ob die

Stromversorgung der Elektronik gewährleistet ist.

Parameter: Keine.

Daten: Das Datum kann nur zwei Werte annehmen. Null heißt, die Stromversorgung ist

ausgeschaltet. Eins heißt, die Stromversorgung eingeschaltet.

5.2.2 STATUS

Bedeutung: Auslesen des 32 Bit Gerätestatus.

Parameter: Keine.

Daten: Das 32bit Statuswort. Die Bits entsprechen den Statusbits, wie sie in Abschnitt

3.4 auf Seite 12 und in der Tabelle 3.4 auf Seite 12 erklärt sind.

5.2.3 INIT

Bedeutung: Initialisierung des Gerätes (Kaltstart). Für die dabei durchzuführenden Aktionen

siehe Abschnitt 4.4.1 auf Seite 14.

Parameter: Keine.

Daten: Keine.

5.2.4 RESET

Bedeutung: Reset des Gerätes (Warmstart). Für die dabei durchzuführenden Aktionen siehe

Abschnitt 4.4.3 auf Seite 15.

Parameter: Keine.

Daten: Keine.

5.2.5 VERSION

Bedeutung: Lesen der Versionskennung der Gerätesoftware.

Parameter: Keine.

Daten: Versionskennung als ASCII-String, pro Datum ein ASCII-Zeichen.

Bytes Inhalt

1...12 Version der USRs

13...24 Version der EQMs

25... 36 Version des verwendeten MIL-Treibers

37... 48 Variante der EQMs

5.2.6 INFOSTAT

Bedeutung: Diese Property liefert einige wichtige Geräteinformationen in einem Zugriff. Die

Informationen werden direkt aus dem Dualport-RAM gelesen, also ohne den expliziten Aufruf eines EQMs, und sind daher in der Abarbeitung nicht abhängig

von Kommandoevents.

Parameter: Keine.

Daten: Die 25 Langworte enthalten im Einzelnen:

1: Gerätestatus (wie in der Property STATUS)

- 2: Gibt in den oberen 16 Bits an, welcher virtuelle Beschleuniger aktiv gesetzt ist (ein Bit pro Beschleuniger). Das niederwertigste Bit (Bit 16) gibt den Beschleuniger 15 an, das Bit 31 den Beschleuniger 0. Die unteren 16 Bit sind nicht verwendet. Dabei bedeutet Null, daß der Beschleuniger inaktiv ist und Eins, daß der Beschleuniger aktiv ist.
- 3: Master-Fehler. Hier ist derjenige Master-Gerätefehlercode mit dem schwersten Fehlergrad eingetragen. Bei mehreren Fehlern mit dem gleichen Fehlergrad wird der erste eingetragen, der gefunden wurde.
- 4: Slave Fehler für virtuellen Beschleuniger 0. Entsprechend dem Master-Fehler wird hier der nach dem Fehlergrad schwerste Slave-Gerätefehlercode für den Beschleuniger 0 eingetragen.
- 5: Entsprechend Punkt 4, aber für virtuellen Beschleuniger 1.

:

19: Entsprechend Punkt 4, aber für virtuellen Beschleuniger 15.

- 20: EC-Mode. In den oberen 16 Bit des Langwortes steht der von der Gerätesoftware eingestellte Default-EC-Mode, in den unteren 16 Bit der aktuelle EC-Mode. Folgende Modi sind definiert:
 - **0:** not set
 - 1: Preset_Command Der ECM hat das Umschalten in Command-Mode vorbereitet aber noch nicht beendet.
 - 2: Command Der ECM läuft im Command-Mode.
 - **3:** Preset_Event Der ECM hat das Umschalten in Event-Mode vorbereitet aber noch nicht beendet.
 - 4: Event Der ECM läuft im Event-Mode.

- 21: EC-Performance-Mode. In den oberen 16 Bit des Langwortes steht der von der Gerätesoftware eingestellte Default-Performance-Mode, in den unteren 16 Bit der aktuelle Performance-Mode. Folgende Modi sind definiert:
 - **0:** not set
 - 1: Display Der ECM läuft im Display-Mode.
 - 2: Preset_Turbo Der ECM Hat das Umschalten in den Turbo-Mode vorbereitet aber noch nicht beendet.
 - **3:** Turbo Der ECM läuft im Turbo-Mode.
- 22: HW_Warning_Maske. Die 32 Bits geben an aus welchen Bits im Gerätestatus das HW-Warning-Bit im Status abgeleitet wird.
- 23 Pulszentralen-Identifikation:
 - **0**: TIF
 - 1: SIS-PZ
 - **2:** ESR-PZ
 - 3...6: undefiniert
 - 7: Software-PZ
 - 8: UNILAC, Superzyklus-PZ
 - 9: UNILAC, Zyklus-PZ Quelle-Rechts
 - 10: UNILAC-PZ, Zyklus-PZ Quelle-Links
 - 11: UNILAC-PZ, Zyklus-PZ Quelle-HLI
 - 12: UNILAC-PZ, Zyklus-PZ Beschl. -HLI
 - 13: UNILAC-PZ, Zyklus-PZ Hochstrominjektor
 - 14: UNILAC-PZ, Zyklus-PZ Alvarez
 - 15: UNILAC-PZ, Zyklus-PZ Transferkanal
- 24: Reserviert für Erweiterungen.
- 25: Reserviert für Erweiterungen.

5.2.7 INFO

Bedeutung: Im Info-Array stehen Konfigurations- und Typen-Parameter des Profilgitters.

Parameter: -

Daten: 778 Bytes,

- 1: version number of $SD\mu P$ software
- 2: device type (1: profile_grid, 2..5: , 6: gas_grid)
- 3: datasize in bits
- 4: polarity (0: unipolar, 1: bipolar)
- 5: integration time (0: fixed, 1: switchable)
- 6: groupswitch (0: standard, 1: grid is part of group for WK_MODE, GAIN_RANGE, GAIN_MODE)
- 7: drivetyp (1: press, 2: stepper, 3:fixed)
- 8: Timing (0 = SIS, 1 = UNILAC)
- 9: number of x wires
- 10: ..

- 11: number of y wires
- 12: ..
- 13-14: reserved
- 15: number of gainranges
- 16: unit of gainranges (see SISUnitType)
- 17-20: gainrange 1 : mantissa/exponent
- 21-112: gainranges 2-24
- 113-116: integration time1 (short)
- 117-120: integration time2 (long)
- 121-376: X-wire positions (positive axis)
- 377-632: Y-wire positions (positive axis)
- 633: 1. measuring-channel-number of x-wires
- 634: 2. measuring-channel-number of x-wires
- 635: 1. measuring-channel-number of y-wires
- 636: 2. measuring-channel-number of y-wires
- 637: channel-number of first x-wires
- 638: number of x-wires in this channel
- 639: position of first x-wire in this chan.
- 640: channel-number of second x-wires
- 641: number of x-wires in this channel
- 642: position of first x-wire in this chan.
- 643: channel-number of first y-wires
- 644: number of y-wires in this channel
- 645: position of first y-wire in this chan.
- 646: channel-number of second y-wires
- 647: number of y-wires in this channel
- 648: position of first y-wire in this chan.
- 649-712: expansion of x-wires (positive axis)
- 713-776: expansion of x-wires (positive axis)
- 777: Polaritaet of currents: 0 = neg., 1 = pos.
- 778: Type of meas.: 0 = integrat., 1 = amplifier

5.2.8 REMOTE

Bedeutung: ??

Parameter: Keine.

Daten: Das Datum kann nur zwei Werte annehmen: Null und eins (ein und aus?).

5.3 Die Slave-Properties

Slave Properties							
Property	Klasse	Parameter		Daten		Größe	
		Anz.	Typ	Anz.	Typ	Einh.	Exp.
ACTIV	R/W	0	_	1	BitSet16	1	0
COPYSET	W	0	_	1	BitSet16	1	0
EQMERROR	RA	0	_	146	Integer32	1	0
INTEGRAT	R/W	0	_	1	Integer16	1	0
WKMODE	R/W	0	_	1	Integer16	1	0
AXIS	R/W	0	_	1	Integer16	1	0
DATASTAT	R	0	_	1	Integer16	1	0
GAINMODI	\mathbf{R}	0	_	1	Integer16	1	0
GAINMODS	R/W	0	_	1	Integer16	1	0
GAINRNGI	R	0	_	1	Integer16	1	0
GAINRNGS	R/W	0	_	1	Integer16	1	0
CURRDAT	RA	0	_	182	BitSet16	1	0
BEAMINFO	RA	4	Integer32	10	RealF	1	0

5.3.1 ACTIV

Bedeutung: Gibt an, ob das Gerät für den zugehörigen virtuellen Beschleuniger an der Pulszu-Puls-Modulation teilnehmen soll bzw teilnimmt.

Parameter: Keine.

Daten: Das Datum kann nur zwei Werte annehmen. Null heißt, das Gerät nimmt für den

zugeordneten Beschleuniger nicht an der PPM teil bzw. soll nicht an der PPM teilnehmen. Eins heißt, das Gerät nimmt für den zugeordneten Beschleuniger an

der PPM teil bzw. soll an der PPM teilnehmen.

5.3.2 EQMERROR

Bedeutung: Fehlermeldungen der auf der SE installierten Gerätesoftware. Es werden die aktu-

ellen Fehlermeldungen sowohl für die Masterfehler als auch für die Slavefehler der Geräteebene geliefert. Dazu wird auch der Inhalt des Fehlerpuffers zurückgegeben,

in dem die letzten aufgetretenen Fehler abgespeichert wurden.

Parameter: Keine.

m Zahl der Master-Fehlermeldungen

f Daten: Die Anzahl der Fehlermeldungen sei bezeichnet durch: s

s Zahl der Slave-Fehlermeldungen

b Größe des Fehlerpuffers

Weiterhin soll gelten:

l = m + s

t = m + s + b

Die Daten im Einzelnen:

1: In den unteren beiden Bytes sind die Anzahl der Master-Fehlermeldungen m und die Anzahl der

Slave-Fehlermeldungen s angegeben:

 $0 \quad 0 \quad s \quad m$

2: erste Master-Fehlermeldung

:

m+1: letzte Master-Fehlermeldung m+2: erste Slave-Fehlermeldung

:

l+1: letzte Slave-Fehlermeldung l+2: Länge b des Fehlerpuffers

l+3: Zahl der Einträge im Fehlerpuffer

l+4: Index des ersten freien Platzes im Fehlerpuffer

(der Fehlerpuffer ist ein Ringpuffer)

l+5: Erster Speicherplatz im Fehlerpuffer

:

t+4: Letzter Speicherplatz im Fehlerpuffer

5.3.3 COPYSET

Bedeutung: Kopiert alle Geräteeinstellungen (Sollwerte) eines virtuellen ("fremden") Beschleu-

nigers in den zugehörigen ("eigenen") Beschleuniger.

Parameter: Keine.

Daten: Nummer des virtuellen ("fremden") Beschleunigers, von dem die Einstellungen

(Sollwerte) kopiert werden sollen.

5.3.4 INTEGRAT

Bedeutung: Integrationszeit der Gitter.

Parameter: Keine.

Daten: Das Datum kann nur zwei Werte annehmen: Der Wert 1 bedeutet kurze Inte-

grationszeit (0.5 ms), der Wert 2 bedeutet lange Integrationszeit (mindestens 5

ms).

5.3.5 WKMODE

Bedeutung: "Arbeitsmodus"

Parameter: Keine.

Daten: Das Datum kann nur zwei Werte annehmen: Der Wert 1 bedeutet Messen, der

Wert 2 bedeutet Test.

5.3.6 AXIS

Bedeutung: Ebenen, die gemessen werden.

Parameter: Keine.

Daten: Das Datum kann nur drei Werte annehmen mit den Bedeutungen:

1: Beide Achsen messen (X und Y).

2: Nur X-Achse messen.

3: Nur Y-Achse messen.

5.3.7 DATASTAT

Bedeutung: Datenstatus.

Parameter: Keine.

Daten: Die einzelnen Bits haben folgende Bedeutung:

O: Data_Ok
 1: chan_corr
 2: No_powfail
 3: Trigger_ok
 4: meas_compl
 5: elec_ready
 6: remote_on

7-15: unbenutzt

5.3.8 GAINMODI

Bedeutung: Behandlung des Verstärkungsbereiches, Istwert.

Parameter: Keine.

Daten: Das Datum kann nur drei Werte annehmen:

1: Manuelle Einstellung des Verstärkungsbereiches.

2: Halbautomatische Einstellung des Verstärkungsbereiches.

3: Vollautomatische Einstellung des Verstärkungsbereiches.

5.3.9 GAINMODS

Bedeutung: Behandlung des Verstärkungsbereiches, Sollwert.

Parameter: Keine.

Daten: Das Datum kann nur drei Werte annehmen:

1: Manuelle Einstellung des Verstärkungsbereiches.

 ${\bf 2:}\,$ Halbautomatische Einstellung des Verstärkungsbereiches.

3: Vollautomatische Einstellung des Verstärkungsbereiches.

5.3.10 GAINRNGI

Bedeutung: Verstärkungsbereich, Istwert.

Parameter: Keine.

Daten: Verstärkungsbereich.

5.3.11 GAINRNGS

Bedeutung: Verstärkungsbereich, Sollwert.

Parameter: Keine.

Daten: Verstärkungsbereich.

5.3.12 CURRDAT

Bedeutung: Aktuelle Einstellungen für die Messung und die Profilwerte

Parameter: Keine.

Daten: Die Bedeutung der einzelnen Daten ist:

1: Workmode (siehe Property WKMODE) Soll

2: Workmode (siehe Property WKMODE) Ist

3: Integrationszeit (siehe Property INTEGRAT) Soll

4: Integrationszeit (siehe Property INTEGRAT) Ist

5: Behandlung des Verstärkungsbereiches (GAINMODS) Soll

6: Behandlung des Verstärkungsbereiches (GAINMODI) Ist

7: Verstärkungbereich (siehe Property GAINRNGS) Soll

8: Verstärkungbereich (siehe Property GAINRNGI) Ist

9: Gemessenen Axen (siehe Property AXIS) Soll

10: Gemessenen Axen (siehe Property AXIS) Ist

11..42: Unbenutzt

43: Datenstatus der Messung (siehe Property DATASTAT)

44: Anzahl der Messungen seit Aktivierung

45: Fehlerstatus, low word

46: Fehlerstatus, high

47..54: Unbenutzt

 $\bf 55..182:$ Stromwerte, erst X-, dann Y-Ebene, Anzahl der Werte (Drähte) siehe Info

5.3.13 BEAMINFO

Bedeutung: Berechnete Strahlparameter (Position, Breite, Form)

Parameter: 4 Werte, Bedeutung ??

Daten: ??

Teil II

Der Entwurf der Software

6 Softwareentwurf

6.1 Besonderheiten

Im Softwareentwurf spiegeln sich die Besonderheiten des Gerätemodells DGX wieder: Zur Operating-Ebene hin wird die Bedienung nach Profilgittern orientiert realisiert, auf der SE findet die Umsetzung von Profilgittern auf Multiplexer-Kanäle und deren Ansteuerung statt. Zur Geräteseite (SD μ P oder SD-Interface) wird hauptsächlich mit Kanälen gearbeitet.

Darüberhinaus sind folgende Besonderheiten erwähnenswert:

- Mit einer Messung an einer Elektronik die Daten werden die Daten für möglicherweise mehr als 1 Gerät gelesen, deshalb laufen die Event-gesteuerten Eqms der DGX-Software im *High-Speed-*Mode, d. h. sie werden nur einmal aufgerufen und bekommen vom ECM nur Informationen über den laufenden virt. Beschleuniger.
- Die Verteilung eines Gitters auf mehrere Kanäle erfordert die Aufteilung der Gitter-Messung auf möglicherweise mehrere Beschleuniger-Zyklen. Die Software arbeitet während einer Messung mit einer Kopie der Sollwerte im lokalen Speicher, sodaß auch während einer Messung die Sollwerte eines Gitters geändert werden können.

Ebenso werden die gemessenen Profile im lokalen Speicher nach dem üblichen Wechselpufferprinzip gespeichert, sodaß jederzeit eine vollständige Profilmessung zur Verfügung steht.

7 Lokale Datenbasis

Keine erwähnenswerten Besonderheiten.

8 Dualport RAM

9 USRs - User Service Routinen

9.1 Gerätespezifische USRs

Zuzüglich der obligatorischen USRs werden für die Steuerung der Profilgitter folgende gerätespezifischen USRs benötigt:

9.1.1 R_BeamInfo

Bedeutung: Berechne und Lese die Strahlparameter aus der aktuellen Profilmessung oder ab-

gelegten Therapie-Meßdaten

Parameter: 2 16-Bit Worte, diese bedeuten:

1: Nummer des MED-Zyklus, dabei gilt

• -n,..,-1: Zyklus-Offset ab aktuellem Zyklus

• 0: Aktuelle Messdaten aus dem DPR

• 1,..,n: absolute Zyklusnr.

- 2: Wahl des Berechnungsalgorithmus und des Intensitaets Schwellwertes, dabei gilt
 - 0: 2.te Momenten Berechnung mit Schwellwert 10 (Adc-Wert)
 - 1,...,99: Randwert-Ermittelung mit Schwellwert n, wobei n den Prozentsatz vom höchsten Meßwert des Datensatzes beschreibt.

Daten: zehn REAL-Werte, diese beschreiben im einzelnen:

- 1: X-Position der Strahlmitte in [mm]
- 2: X-Strahlbreite in [mm]
- ${\bf 3:}$ X-Strahlradius pos. Drahtpositionen (pos. bezüglich Strahlschwerpunkt) in $[\rm mm]$
- $\bf 4: \ X\text{-}Strahlradius neg. Drahtpositionen (neg. bezüglich Strahlschwerpunkt) in <math display="inline">[mm]$
- 5: X-Profilintegral
- 6: Y-Position der Strahlmitte in [mm]
- 7: Y-Strahlbreite in [mm]
- 8: Y-Strahlradius pos. Drahtpositionen (pos. bezüglich Strahlschwerpunkt) in [mm]
- **9:** Y-Strahlradius neg. Drahtpositionen (neg. bezüglich Strahlschwerpunkt) in [mm]
- 10: Y-Profilintegral

Fehler-Meldungen:

Im primären Fehler der Usr steht der bei der Messung der zurückgegebenen Daten aufgetretene Fehler.

Im sekundären Fehler steht der Status der aktuell laufenden Profilmessung. Er kann z.B. dann zur Auswertung herangezogen werden, wenn ein aktives Gerät keine bzw. keine neuen Daten liefert.

10 EQMs - Equipment Module

10.1 Interne Zustände

10.1.1 Bedeutung der internen Zustände

Für die Gerätesoftware sind folgende interne Zustände definiert:

not_set Initzustand. Dieser Zustand sollte nie auftreten.

error Während der Abarbeitung einer Messung wurde ein Fehler erkannt.

ready Das Gerät ist bereit für Aktionen. Ausgangszustand vor Beginn einer Messung.

busy Die letzte Messung ist noch nicht vollständig abgeschlossen.

10.1.2 Übergänge zwischen den Zuständen

Erläuterung, welche Übergänge zwischen den internen Zuständen vorgesehen sind und wodurch sie ausgelöst werden sollen.

Die Zustände und die Übergänge zwischen denselben sind in Tabelle 4 zusammengefaßt. Die Legende zu diesen Tabellen ist in Tabelle 5 zu finden.

Tabelle der Zustandsübergänge				
von↓ na	$\operatorname{ach} \rightarrow$	error	ready	busy
error	U:	_	RESET	Vorb.
	В:	=	RP	RP
	A:	_	Reset_EQM	$Vorb_EQM$
ready	U:	Fehler	_	Vorb.
	В:	=	_	RP
	A:	$\operatorname{div.}$ EQMs	_	$Vorb_EQM$
busy	U:	Fehler	Messung Ende	_
	В:	=	RP	=
	A:	div. EQMs	Read_EQM	-

Tabelle 4: Zustandsübergangsdiagramm

Legende

- Die Priorität der Zustände (höchste Priorität zuerst): error, ready. Liegen mehrere Bedingungen für verschiedene Zustände gleichzeitig vor (z.B. Netz aus und Gerät auf Handbetrieb), muß der jeweils wichtigste Zustand eingenommen werden.
- $\bullet\,$ U: Auslösende Ursache.

RESET Reset wird per Kommando oder Knöpfchendrücken ausgelöst.

• B: Abzuprüfende Bedingung.

R Remotebit des Status steht auf Remote.
r Remotebit des Status steht auf Local.
P Powerbit des Status steht auf Power on.
p Powerbit des Status steht auf Power off.

• A: Ausführende Stelle des Zustandübergangs.

Status lesen (period.) Beim periodischen (oder zumindest regelmäßigen) Lesen des Status.

Tabelle 5: Legende zu den Zustandsübergangsdiagrammen

10.1.3 Standard-Zustandsübergänge

Zur Verdeutlichung sollten hier einige Standard-Zustandsübergänge gezeigt werden. Sie kommen Zustande, wenn eine Sequenz im Normalbetrieb ohne Fehler abläuft.

Mit der ersten Meßvorbereitung wird aus dem ready- oder dem error-Zustand in den Zustand busy weitergeschaltet. Zum Istwert lesen wird der Zustand busy erwartet und nach Abschluß der Messung zum Zustand ready weitergeschaltet.

ready -> busy -> ready

10.2 Eventkonnektierte EQMs

10.2.1 Vorb_EQM

Event: variantenabhängig:

UNISDI Evt_Prep_Next_Acc (16)

SIS* Evt_Start_Cycle (32)

TKSDN Evt_Prep_Next_Acc (16)

Aktion: Vorbereitung der Messung. Dabei wird von den Geräten ausgehend der erste zu

messende Kanal ermittelt und vorbereitet. Die Meßdatenverwaltung der zu mes-

senden Gitter wird entsprechend eingestellt.

10.2.2 Mess_EQM

Event: variantenabhängig:

UNISDI Evt_Beam_On (6)

SISSDI Evt_End_Cycle (55)

TKSDN nicht konnektiert

Aktion: Verzögerter Start des Mess_EQM. Die Verzögerung entspricht der eingestellten In-

tegrationszeit.

10.2.3 Read_EQM

Event: variantenabhängig:

UNISDI verzögerter Start durch Mess_EQM

 ${f SISSDI}$ verzögerter Start durch ${f Mess_EQM}$

TKSDN Evt_Beam_On (6)

Aktion: Lesen des gemessenen Kanals der Elektronik mit entsprechender Fehlerbehand-

lung. Anschließend werden die Kanaldaten auf die zu messenden Gitter verteilt.

10.3 Periodisch konnektierte EQMs

10.3.1 Update_Config_EQM

Zeit: 60s ??

Anzahl: Unendlich.

Aktion: Aktualisieren der Geräteverfügbarkeit: Es wird versucht, von möglichen Geräte-

adressen den Status zu lesen. Erfolgt eine Reaktion, wird das Gerät als "online"

geführt.

10.4 An externe Interrupts konnektierte EQMs

10.4.1 Interlock_EQM

Interrupt: Summen-Interlock.

Aktion: Keine Aktion ausführen.

10.4.2 DRD_EQM

Interrupt: Data Ready Interrupt.

Aktion: Eine Elektronik mit SD-Interface meldet mit einem DRD-Interrupt, daß die In-

tegration beendet ist. Die SE muß vor dem Lesen der Daten auf das Ende der

Digitalisierung warten.

10.4.3 DRQ_EQM

Interrupt: Data Request Interrupt.

Aktion: Keine Aktion ausführen.

10.5 Kommandogetriggerte EQMs

- 10.5.1 Dev_Init_EQM
- 10.5.2 Dev_Reset_EQM
- 10.5.3 Status_EQM
- 10.5.4 Active_EQM
- 10.5.5 Power_EQM

10.6 EQMs für die Diagnose vor Ort

10.6.1 Display_DPR_EQM

Parameter: Das EQM benötigt 2 Parameter.

1. virtueller Beschleuniger (in Hex angeben)

2. logische Gerätenummer (in Hex angeben)

Daten: Keine.

Aktion: Zeigt am Bildschirm vor Ort die wichtigsten Daten aus dem DPRAM für das

gewählte Gerät und den gewählten virtuellen Beschleuniger an.

10.6.2 Display_DevErr_EQM

Parameter: Das EQM benötigt 2 Parameter.

1. virtueller Beschleuniger (in Hex angeben)

2. logische Gerätenummer (in Hex angeben)

Daten: Keine.

Aktion: Zeigt am Bildschirm vor Ort die Error-Codes aus der aus der Datenstruktur im

Dualport-RAM für das gewählte Gerät und den gewählten virt. Beschleuniger an.

10.6.3 DispInfo_EQM

Parameter: Keine.

Daten: Keine.

Aktion: Zeigt am Bildschirm vor Ort die im Infopaket einer Elektronik (nur SD-Interface

) eingetragenen Profilgitter an.

10.6.4 DispData_EQM

Parameter: Das EQM benötigt 1 Parameter.

1. virtueller Beschleuniger (in Hex angeben)

Daten: Keine.

Aktion: Zeigt am Bildschirm vor Ort die Gitterdaten der letzten Messung für ein Profil-

gitter an.

10.6.5 DispRawData_EQM

Parameter: Keine.

Daten: Keine.

Aktion: Zeigt am Bildschirm vor Ort für eine Elektronik die zuletzt gelesenen Kanaldaten

an

10.7 Sonstige EQMs

10.7.1 Startup_EQM

Installiert die Event-EQM-Konnektierung für alle virtuellen Beschleuniger (siehe hierzu auch Abschnitt 4.3 auf Seite 14) und schaltet die SE in den Event-Mode.

10.8 Globale Routinen

Hier werden alle Routinen aufgeführt, die im Modul EQMs global definiert sind und von verschiedenen EQMs benutzt werden.

$10.8.1 \quad Read_and_Update_Status$

10.8.2 Do_Intr_Service_Prep

11 Varianten

Variant 6

Hier noch einmal eine Aufzählung der implementierten Software-Varianten:

Variant 1	$({\tt DGX\$UNISDI.PIN}) \ {\tt Standardgitter} \ {\tt mit} \ {\tt SD-Interface} \ {\tt im} \ {\tt Unilac-Timing}.$
Variant 2	(DGX\$TKSDN.PIN) Standardgitter mit SD μ P im Unilac-Timing.
Variant 3	$({\tt DGX\$SISSDI.PIN})\ {\tt Integratorgitter}\ {\tt mit}\ {\tt SD-Interface}\ {\tt im}\ {\tt SIS-Timing}.$
Variant 4	(DGX\$SISSDN.PIN) Gitter mit SD μ P im SIS-Timing.
Variant 5	(DGX\$SISSDIMED.PIN) SISSDI mit Therapie-Erweiterung.

 $({\tt DGX\$SISSDNMED.PIN})$ SISSDN mit Therapie-Erweiterung.

Index

Symbole $$	$-$ Do_Intr_Service_Prep	31
Ändammagannatalrall	$-$ Read_and_Update_Status	31
Änderungsprotokoll 2	• Kommandogetriggerte	29
	$-$ Active_EQM \dots	29
—A—	$-$ Dev_Init_EQM \dots	29
	$-$ Dev_Reset_EQM \dots	29
Abriß2	– Power_EQM	
An externe Interrupts konnektierte EQMs 29	- Status_EQM	
Aufgabe des Gerätes7	• Periodisch konnektierte	29
	$-$ Update_Config_EQM	29
—B—	• Sonstige	30
— D —	- Startup_EQM	30
Bedienung des Gerätes13	Event-Overrun	15
Bedienungsfehler15	Event-Sequenzfehler	15
Besonderheiten	Eventkonnektierte EQMs	28
Besonderheiten SD-Interface	Eventkonnektierungen	14
—D—	— F —	
_	Funktionscodes	9
Datenbasis	• ifb_dev_fct_1	
Dev_Init_EQM	• ifb_ec_err	
DispData_EQM30	• ifb_intr_mask	
DispInfo_EQM30	• ifb_ist_1	
Display_DevErr_EQM30	• ifb_ist_2	
Display_DPR_EQM	• ifb_rdstat	
DispRawData_EQM	• ifb_rdstat_int	
DRD Interrupt	• ifb_reset	
DRD_EQM	• ifb_soll_1	
DRQ_EQM	• ifb_tst_in	
Dualport RAM	• ifb_tst_out	
	1 110_000_000	
— E —	—G—	
EQMs	Gerät	
• An externe Interrupts konnektierte 29	• Aufgabe	7
– DRD_EQM	• Bedienung	13
- DRQ_EQM	• Hardware	7
- Interlock_EQM	• Repräsentation	15
• Eventkonnektierte28	• Schnittstelle	9
– Mess_EQM28	Gerätemodell	7
- Read_EQM	• Kennzeichnung	16
- Vorb_EQM28	• Master-Properties	
• für die Diagnose vor Ort	• Slave-Properties	
- DispData_EQM	Gerätevarianten	
- DispInfo_EQM	Globale Routinen	
$-$ Display_DevErr_EQM 30		
- Display_DPR_EQM	—H—	
- DispRawData_EQM30		
• Globale Routinen	Handbetrieb	15

	PowerFail-Register1
Hardwarefehler-Bit	Properties
Hardwarestatus12	• ACTIV 20
	• AXIS 2
	• BEAMINFO
—I—	• COPYSET2
ifb_dev_fct_1 9	• CURRDAT 23
	• DATASTAT22
ifb_ec_err	• EQMERROR
ifb_intr_mask9	• GAINMODI
ifb_ist_110	• GAINMODS
ifb_ist_210	• GAINRNGI 22
ifb_rdstat	
ifb_rdstat_int	• GAINRNGS
ifb_reset	• INFO
ifb_soll_19	• INFOSTAT 1
ifb_tst_in9	• INIT
ifb_tst_out	• INTEGRAT2
Init14	• Master
Interfacekarte9	• POWER 10
Interlock_EQM	• REMOTE
Interne Zustände	• RESET
Interrupt	• Slave
• DRD Interrupt	• STATUS
T.	• VERSION
	• WKMODE2
—K—	5 WIMIOBE
Kaltstarts	D
Kaltstarts	—R—
$\label{tommandogetriggerte} Kommandogetriggerte \ EQMs \dots 29$	R_BeamInfo
Kommandogetriggerte EQMs	R_BeamInfo 2 Read_EQM 2
$\label{tommandogetriggerte} Kommandogetriggerte \ EQMs \dots 29$	R_BeamInfo
Kommandogetriggerte EQMs	R_BeamInfo 2 Read_EQM 2
Kommandogetriggerte EQMs	R_BeamInfo
Kommandogetriggerte EQMs	R_BeamInfo
Kommandogetriggerte EQMs	R_BeamInfo
Kommandogetriggerte EQMs	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 —S—
Kommandogetriggerte EQMs	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 —S— Schnittstelle zum Gerät 9
Kommandogetriggerte EQMs	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 —S— Schnittstelle zum Gerät 5 Sequenzfehler 1
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 5 Sequenzfehler 1 Slave-Properties 2
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 —S— Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1 Sonstige EQMs 3
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 5 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1 Sonstige EQMs 3 Spezialitäten Integratorgitter mit SD-Interface
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1 Sonstige EQMs 3 Spezialitäten Integratorgitter mit SD-Interfact 11
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1 Sonstige EQMs 3 Spezialitäten Integratorgitter mit SD-Interfact 11 Störungen 1
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1 Sonstige EQMs 3 Spezialitäten Integratorgitter mit SD-Interfacture 11 Störungen 1 • Event-Overrun 1
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1 Sonstige EQMs 3 Spezialitäten Integratorgitter mit SD-Interfacture 1 Störungen 1 • Event-Overrun 1 • Event-Sequenzfehler 1
—L— Lokale Datenbasis 25 —M— Master-Properties 16 Mess_EQM 28 —N— Normalbetrieb 13 —O— Overrun 15	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1 Sonstige EQMs 3 Spezialitäten Integratorgitter mit SD-Interfacture 1 Störungen 1 • Event-Overrun 1 • Event-Sequenzfehler 1 • Kommunikation EC – Gerät 1
	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1 Sonstige EQMs 3 Spezialitäten Integratorgitter mit SD-Interfacture 1 Störungen 1 • Event-Overrun 1 • Event-Sequenzfehler 1
—L— Lokale Datenbasis 25 —M— Master-Properties 16 Mess_EQM 28 —N— Normalbetrieb 13 —O— Overrun 15	R_BeamInfo 2 Read_EQM 2 Repräsentation des Gerätes 1 Reset 1 Schnittstelle zum Gerät 2 Sequenzfehler 1 Slave-Properties 2 Softwareentwurf 2 Softwarestatus 1 Sonstige EQMs 3 Spezialitäten Integratorgitter mit SD-Interfacture 1 Störungen 1 • Event-Overrun 1 • Event-Sequenzfehler 1 • Kommunikation EC – Gerät 1

—T—
Timing
—U—
Update_Config_EQM29
USRs
• gerätespezifische25
$-$ R_BeamInfo25
v
Varianten
• Betriebs14
• Geräte
• Software31
Vorb_EQM
—W—
Warmstarts15
— Z —
Zeitkritische Anforderungen13
Zustände
• Interne
– Übergänge26
- Bedeutung
- Standard-Übergänge 28